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Introduction  

When designing a pavement surface, engineers 

must strive to balance several competing 

parameters, including load capacity, durability, 

ride quality, construction and maintenance costs, 

as well as safety and traffic noise.  While most of 

the above parameters can be achieved by using 

proper materials and construction techniques, 

current design methodologies do not routinely 

address friction and texture control. Adequate 

pavement friction is of paramount importance in 

reducing the number of collisions, especially on 

wet pavements.  

 

Pavement friction is primarily a function of the 

surface texture, which includes both micro- and 

macrotexture.  Pavement microtexture is a 

function of the surface texture of the aggregate 

particles and provides a gritty surface that 

disrupts the continuity of the water film and 

produces frictional resistance between the tire and 

pavement.  Macrotexture is determined by the 

overall properties of the pavement surface and 

provides surface drainage channels for water 

expulsion from the contact area between the tire 

and pavement. 
 

Due to limited availability of high friction 

aggregates in some areas, there is a need to 

combine them with locally available materials 

that may have lower polishing resistance. The 

main objective of this research was to evaluate 

various blends of aggregates to optimize the 

combination of micro- and macrotexture to 

achieve a desired level of friction.  The goal was 

to maintain the currently provided level of 

friction while reducing the reliance on the 

microtexture provided by special friction 

aggregates, if possible, by increasing the mixture 

macrotexture.  

 

To achieve this primary objective, a secondary 

objective was necessary; that is, to identify an 

accelerated method for polishing or abrading 

samples and measuring their surface friction 

characteristics.  

  

Another objective was the development of 

preliminary procedure for determination of an 

International Friction Index (IFI)-based flag value 

that can be used as a baseline indicator for 

laboratory friction measurements.  In addition, 

field investigation of the relationship between 

traffic volume and changes in the friction values 

was also undertaken in this study.  

 

The scope of this study included the investigation 

of the relationship between mixture composition 

and the following pavement characteristics: 

surface texture, friction and polishing resistance. 

Based on the relationship between texture and 

friction, an International Friction Index (IFI)-

based flag friction value was developed to serve 

as a reference point for laboratory type testing.  

 

This study involved laboratory testing of various 

aggregate gradations (fine, s-shaped and coarse) 

and aggregate sizes (9.5 mm and 19 mm Nominal 

Maximum Aggregate Size, NMAS) of Superpave 

mixtures.  Aggregates commonly used in HMA in 

the north central region of the USA (natural sand, 

dolomite and two types of limestones) were 

combined with different percentages (from 0 to 

70%) of two high friction aggregates (quartzite 

and steel slag) to produce the mixes used in the 
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study.  In addition, one stone matrix asphalt 

(SMA) and one porous friction course (PFC) mix 

were also tested.  

 
Friction and texture measurements were 

conducted on 50 laboratory-prepared and 

polished HMA slabs. These included 46 slabs 

prepared using Superpave mixtures, two slabs 

prepared using an SMA mixture and two slabs 

prepared using a PFC mixture.  In order to obtain 

frictional resistance curves, measurements were 

performed after compaction of the slabs and 

periodically during the slab polishing cycle. 

Laboratory texture and friction tests were 

conducted using the Circular Track Meter (CTM) 

and Dynamic Friction Tester (DFT) devices, 

respectively. 

 
In addition to the laboratory tested slabs, the field 

friction and texture data were collected from 25 

sites on existing highways and test track sections. 

These data were used to obtain the friction 

baseline values.  Field measurements were 

conducted using the CTM, DFT and ASTM E 

274 towed friction trailer.  The field test sites 

included Superpave designed HMAs, Marshall 

designed HMAs, PFC, SMA and concrete (tined 

and smooth) pavements.  Using these field data 

and recommendations found in the literature, the 

IFI flag value was determined.

Findings  

 A new laboratory testing methodology was 

developed and refined during this study that 

allows for determination of two crucial properties 

for characterizing and predicting pavement 

friction: polishing rate and terminal friction 

value. The Circular Track Machine (CTM) 

together with a Dynamic Friction Tester (DFT) 

can be used as a tool to assess the micro- and 

macrotexture of a mix and then to calculate the 

frictional properties (F60) of various pavement 

surfaces.  A Circular Track Polishing Machine 

(CTPM), refined in this study, may be used for 

the laboratory simulation of the polishing action 

of highway traffic. In the future, a mixture 

approval procedure involving determination of 

the predicted polishing rate and terminal friction 

values for a given mixture could be used to 

evaluate the mixture frictional properties. 

 The research proved that it is possible to 

modify frictional properties of the pavement by 

changing the aggregate type and HMA 

composition. 

 Increasing the friction aggregate (quartzite 

or steel slag) content substantially improved the 

polishing resistance of HMA mixes. In general, 

mixes with steel slag generally exhibited slightly 

higher polishing resistance (lower polishing rate) 

than mixes with quartzite. 

 When the carbonate aggregates used in 

this study were blended with high friction 

aggregates (steel slag and quartzite), the overall 

friction level generally increased.  Increasing the 

friction aggregate content from 10 to 20% had 

relatively little effect on the friction level, but 

friction increase dramatically when the friction 

aggregate content was increased to 40 or 70%. If 

friction is to be improved only by adding high 

friction aggregates to the local carbonate 

aggregates, the friction aggregate content should 

be 20% or greater, depending on the amount of 

improvement needed. There may be, however, 

other ways of increasing the overall surface 

friction. 

 Larger NMAS sizes are desirable from a 

frictional point of view, and they should be used 

where other considerations (such as layer 

thickness and smoothness, among others) allow. 

 An International Friction Index (IFI) 

based model using the parameters measured with 

the CTM and DFT during polishing in the CPTM 

was developed to describe the change in 

frictional properties under traffic/polishing. 

 The International Friction Index 

parameters (F60 and Sp) can be improved by 

increasing the pavement macrotexture. 

 The value of the fineness modulus (FM) of 

the aggregate blend correlates well with the 

pavement macrotexture and thus has a great 

influence on the pavement frictional properties. 

Pavement frictional properties can be improved 

either by using highly polish resistant aggregate 

(such as quartzite or steel slag) blended with the 

locally available carbonate rocks or by modifying 

the aggregate blend in such a way that the FM 

will be increased. Mixes with FM values of 4.6 

or higher generally had high macrotexture and 

friction levels. 

 Based on the literature findings and field 

measurements using the ASTM E 274 towed 

friction trailer (equipped with both rib and 

smooth tires) and using the CTM/DFT devices, 

the approximate frictional flag value (F60) was 

determined. 

 Comparison of the range of friction values 
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obtained during the laboratory part of this study 

with results of the field measurements suggested 

good correlation between the laboratory 

measurements and actual highways conditions. 

Similarly, measurements with different friction 

measuring devices showed the same trends in the 

data. 

 

 

 Further work is needed to improve the 

compaction technique for laboratory slabs and to 

correlate the number of wheelpasses in the 

CPTM to actual traffic levels. The proposed 

polishing model should be validated by testing 

more types of materials under actual field 

conditions; work has already begun on this effort 

under another research project involving 

extensive field testing. 

 

Implementation 

 

 

 The results of this study resulted in the 

development of a polishing model. Application 

of this model to the frictional properties allows 

for the determination of two crucial polishing 

parameters for a given mixture: a4 (polishing 

rate) and F60@x1 (terminal friction level). 

Frictional parameters of a mixture can then be 

assessed and the decision may be made whether 

the given mixture meets the desired friction 

criteria.  

 An F60 flag value was estimated based on 

the current Indiana DOT practice, measurements 

with CTM/DFT devices and a towed friction 

trailer, as well as conclusions from a PIARC 

study [Wambold et al. 1996]. While this value 

should be further verified, it can be used as a 

starting point for the lab evaluation of the 

frictional properties of various HMA mixtures.  

 A CTPM machine and test protocol 

developed in this study are very promising tools 

to evaluate frictional properties of various 

HMAs, however, additional field verification of 

that method is needed.  

 The lab compaction method should be 

further improved so it more closely simulates 

field construction processes.    

 If the use of an aggregate blend consisting 

mostly of polish susceptible aggregates is 

desired, the high friction coarse aggregate 

content should be 20% or greater in the overall 

aggregate blend.  This finding should be further 

verified by performing field friction 

measurements of pavements with varying 

percentages of polishing aggregates.   

 Both steel slag and quartzite were found to 

improve the frictional characteristics of HMA 

mixes in which they are used.  The choice of 

which high friction aggregate to use should be 

used based on availability and cost. 

 In addition to substituting high friction 

aggregates for a portion of the polish susceptible 

aggregates, however, this study showed that the 

frictional characteristics of the surface can also 

be improved by changing the value of the 

fineness modulus (FM) of the surface mix.  

Based on the limited field observation, in 

general, HMA blends with a FM of about 4.6 or 

greater should provide a relatively “deep” 

pavement macrotexture (MPD above about 0.6 

mm).   

 In general, the s-shaped gradation resulted 

in higher MPD (“deeper” texture) and thus 

improved friction at high speeds.  

 One other way to increase the 

macrotexture of the surface is to use aggregates 

with larger NMAS sizes. Such mixtures are 

desirable from a frictional point of view and 

should be used where other considerations (such 

as tire pavement/noise, layer thickness and 

smoothness, among others) allow.  
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ABSTRACT 

 

Wet pavement friction is known to be one of the most important roadway safety 

parameters.  The microtexture, macrotexture and friction of the pavement surface are 

integrally related.  Current widely used test methods allow evaluation of the frictional 

properties and polishing resistance of the aggregate only.  There is no generally accepted 

standardized laboratory test method to address the overall pavement frictional properties.  

In this research, which included both laboratory and field components, frictional 

properties of flexible (asphalt) pavements were investigated.   

As a part of this study, a laboratory device to polish asphalt specimens was 

refined and a procedure to evaluate mixture frictional properties was proposed.  

Following this procedure, 46 different Superpave mixtures (each utilizing a different 

aggregate blend), one stone matrix asphalt (SMA) mixture and one porous friction course 

(PFC) mixture were tested. 

In addition, field sections constructed using Superpave, Marshall, SMA and PFC 

mixtures were also tested for friction and noise.  Field measurements included testing a 

total of 23 different asphalt and two concrete pavements.   

The field friction testing was performed using both portable Circular Track Meter 

(CTM) and Dynamic Friction Tester (DFT) devices and the ASTM E 274 locked wheel 

friction trailer.  The laboratory friction testing was performed using the CTM and DFT 

devices only. 

The results of both field and laboratory measurements were used to develop an 

International Friction Index (IFI)-based protocol for measurement of the frictional 



 

 

xx 

characteristics of asphalt pavements for laboratory friction measurements.  The results 

collected in the course of the study indicate that the IFI-based flag values could be 

successfully used in place of SN-based flag values to characterize frictional 

characteristics of pavements. 

Based on the results of the study, it appears the content of high friction aggregate 

should be 20% or more of the total aggregate blend when used with other, polish 

susceptible coarse aggregates; the frictional properties increased substantially as the 

friction aggregate content increased above 20%.  Both steel slag and quartzite were found 

to improve the frictional properties of the blend, though steel slag had a lower polishing 

rate.  In general, mixes containing soft limestone demonstrated lower friction values than 

comparable mixes with hard limestone or dolomite.   

Larger nominal maximum aggregate size mixes had better overall frictional 

performance than smaller sized mixes.  In addition, mixes with higher fineness moduli 

generally had higher macrotexture and friction. 
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CHAPTER ONE: INTRODUCTION 

 

 

 

When designing a pavement surface, engineers must strive to balance several 

competing parameters, including load capacity, durability, ride quality, construction and 

maintenance costs, as well as safety and traffic noise.  While most of the above 

parameters can be achieved by using proper materials and construction techniques, 

current design methodologies do not routinely address friction and texture control 

[Goodman et al. 2006].  Adequate pavement friction is of paramount importance in 

reducing the number of collisions, especially on wet pavements.  A relationship between 

low wet pavement friction and the probability of an accident was proposed by Burchet 

and Rizenbergs [1982] and by Kamel and Gartshore [1982].   

Pavement friction is primarily a function of the surface texture, which includes 

both micro- and macrotexture.  Pavement microtexture is defined as “a deviation of a 

pavement surface from a true planar surface with characteristic dimensions along the 

surface of less than 0.5 mm” while the pavement macrotexture is defined as “a deviation 

of 0.5 – 50 mm” [Henry 1996, Wambold et al. 1995].  According to the same authors, 

these deviations correspond to texture wavelengths with one-third octave bands lower 

than 0.4 mm for microtexture and 0.5 – 50 mm for macrotexture.  Microtexture (a 

function of the surface texture of the aggregate particles) provides a gritty surface that 

disrupts the continuity of the water film and produces frictional resistance between the 

tire and pavement.  Macrotexture (determined by the overall properties of the pavement 
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surface) provides surface drainage channels for water expulsion from the contact area 

between the tire and pavement.  This expulsion prevents hydroplaning and improves wet 

frictional resistance by enhancing the tire/pavement contact [Fulop et al. 2000, Hanson 

and Prowell 2004].   

While efforts to increase the mechanical durability of pavements are at the core of 

Superpave technology, none of the existing mix design methods specifically focuses on 

addressing their frictional characteristics.  This property is typically ensured by using 

quality coarse aggregate with a history of good frictional performance [West et al. 2001].   

The material properties, including aggregate types and mixture composition, were 

studied as a part of this project and an attempt was made to develop a relationship 

between them and the frictional characteristics of the pavement.   

 

1.1. Problem Statement 

Due to limited availability of high friction aggregates in some areas, there is a 

need to combine them with locally available materials that may have lower polishing 

resistance.  There is also a need to assess and optimize the combined effects of pavement 

micro- and macrotexture on the level of pavement friction.  In order to achieve this 

optimization, it is first necessary to identify an accelerated method to polish test samples 

and test their frictional properties. 
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1.2. Objectives 

 The main objective of this research was to evaluate various blends of aggregates 

to optimize the combination of micro- and macrotexture to achieve a desired level of 

friction.  The goal was to maintain the currently provided level of friction while reducing 

the reliance on the microtexture provided by special friction aggregates, if possible, by 

increasing the mixture macrotexture. 

 To achieve this primary objective, a secondary objective was necessary; to 

identify an accelerated method for polishing or abrading samples and measuring their 

surface friction characteristics. 

Another objective was the development of preliminary procedure for 

determination of an International Friction Index (IFI)-based flag value that can be used as 

a baseline indicator for laboratory friction measurements.  In addition, field investigation 

of the relationship between traffic volume and changes in the friction values was also 

undertaken in this study.  

 

1.3. Hypothesis and Scope of the Study 

Based on the literature survey, mixture composition seems to affect the frictional 

and noise properties of flexible pavements.  As a result, it was hypothesized that it may 

be possible to predict and modify the frictional properties of the pavement by changing 

the aggregate type and HMA composition.  

The scope of this study included the investigation of the relationship between 

mixture composition and the following pavement characteristics: surface texture, friction 

and polishing resistance.  Based on the relationship between texture and friction, an 
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International Friction Index (IFI)-based flag friction value was developed to serve as a 

reference point for laboratory type testing. 

This study included both laboratory and field measurements.  The overall scope of 

the research plan included a literature study, material (aggregate and binder) 

characterization, test site selection, mix design, sample preparation, testing and data 

analysis. 

This study involved laboratory testing of various aggregate gradations (fine, s-

shaped and coarse) and aggregate sizes (9.5 mm and 19 mm Nominal Maximum 

Aggregate Size, NMAS) of Superpave mixtures.  Aggregates commonly used in HMA in 

the north central region of the USA (natural sand, dolomite and two types of limestones) 

were combined with different percentages (from 0 to 70%) of two high friction 

aggregates (quartzite and steel slag) to produce the mixes used in the study.  In addition,  

one stone matrix asphalt (SMA) and one porous friction course (PFC) mix were also 

tested.   

Friction and texture measurements were conducted on 50 laboratory-prepared and 

polished HMA slabs.  These included 46 slabs prepared using Superpave mixtures, two 

slabs prepared using an SMA mixture and two slabs prepared using a PFC mixture.  In 

order to obtain frictional resistance curves, measurements were performed after 

compaction of the slabs and periodically during the slab polishing cycle.  Laboratory 

texture and friction tests were conducted using the Circular Track Meter (CTM) and 

Dynamic Friction Tester (DFT) devices, respectively. 

In addition to the laboratory tested slabs, the field friction and texture data were 

collected from 25 sites on existing highways and test track sections.  These data were 
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used to obtain the friction baseline values.  Field measurements were conducted using the 

CTM, DFT and ASTM E 274 towed friction trailer.  The field test sites included 

Superpave designed HMAs, Marshall designed HMAs, PFC, SMA and concrete (tined 

and smooth) pavements.  Using these field data and recommendations found in the 

literature, the IFI flag value was determined.   

 

1.4. Organization of the Report 

This report is divided into three parts; in the first part (Chapter 2), the current 

knowledge on pavement friction and noise is summarized.  In the second part (Chapter 3) 

materials, equipments and test methods used in this study are described.  The third part 

(Chapters 4 to 6) presents the test results, conclusions and recommendations. 
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CHAPTER TWO: LITERATURE REVIEW 

 

 

In this chapter, the terms pavement friction, micro- and macrotexture are defined, 

and general issues related to measurements of those parameters are discussed.  In 

addition, flexible pavement characteristics contributing to friction are summarized. 

 

2.1. Fundamentals of Pavement Texture and Friction 

2.1.1. Pavement Texture and Friction  

Tire/pavement friction is defined as the relationship between the vertical and 

horizontal forces developed as a tire slides along a pavement surface.  To the vehicle 

operator, friction is an indicator of safety, a measure of how quickly a vehicle can be 

stopped [MEPDG 2004, Roberts et al. 1996].  Friction resistance is defined by the 

ASTM E 867 (2006) specification as “the ability of the traveled surface to prevent the 

loss of traction.” 

Loss of traction on a wet pavement surface can be attributed to the presence of a 

water film in the pavement/tire contact area.  As the vehicle speed increases, the 

tire/pavement contact surface area decreases.  This happens because there is less time for 

the water film to escape from the tire/pavement interface, resulting in a thicker film 

between the tire and pavement.  Moreover, this relationship depends on the pavement 

texture [Kulakowski and Harwood 1990].   
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In this study, a great emphasis was placed on studying the wet friction 

phenomenon.  This term should not be confused with the hydroplaning problem.  

Hydroplaning occurs when direct tire/pavement contact is lost due to the presence of a 

water film on the surface of the road.  More in-depth discussion of the hydroplaning 

problem can be found elsewhere [Browne 1975, Ong and Fwa 2007].  General wet 

friction problems could be considered partial, but not full, hydroplaning. 

 

2.1.2. Mechanism of Friction 

The mechanism of friction can be theoretically described by the five classical 

Euler’s laws of friction, which can be stated as follows: 

1. The coefficient of friction is material dependent,  

2. The coefficient of friction is independent of apparent contact area, 

3. The coefficient of friction is independent of load, 

4. The static coefficient of friction is higher than the sliding coefficient of friction, and 

5. The coefficient of friction is independent of sliding speed. 

Sometimes, incorrectly, the classical Euler’s laws are applied to rubber materials.  

However, viscoelastic materials (including rubber) do not completely obey these laws.  

Moreover, tire/pavement friction depends on the normal force that the tire exerts on the 

pavement.  This force, in turn, depends on tire inflation pressure, contact area and load, 

velocity and temperature [Kummer 1962, Kummer and Meyer 1962].  Probably the most 

fundamental tire/pavement friction study was conducted in the 1960s [Kummer 1962, 

Kummer and Meyer 1962] and resulted in the so-called “Unified Theory of Rubber and 

Tire Friction,” which includes considerations of these facts.   
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As shown in equation 1 and in Figure 1, conventional friction theories 

agree that friction at the tire/pavement interface has two principal components [Kummer 

1962, Kummer and Meyer 1962, French 1989]: hysteresis, developed when the tire 

rubber deforms due to pavement surface irregularities; and adhesion, molecular bonds 

generated when the tire slides over the aggregate surface.   

ha FFF         (1) 

where:  

Fμ = friction force, 

Fa = adhesion force depending on the interface shear strength and the contact area, 

Fh = hysteresis force generated due to the damping losses within the rubber. 

 

Figure 1. Principal components of pavement/tire friction [after Kummer 1966] 
Note: The symbol used in this document to represent the friction force is “Fμ”, 

rather than “F” as shown in Figure 1).  
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It should be noted that the hysteresis component would be present even if the 

pavement surface were perfectly lubricated [Bazlamit and Reza 2005, Flitsch et al. 2005, 

Kummer and Meyer 1962].  During typical road experiments it is not possible to 

distinguish between hysteresis and adhesion.  Two extreme conditions where either one 

or the other component would play a significant role are: a clean, dry plate of glass, 

where there will be no repetitive deformations in the contact area so the hysteresis 

component may be considered negligible; or a wavy (irregular) well-lubricated surface, 

where the adhesion component would be greatly reduced.  However, even under these 

conditions the adhesion component may be negligible only at low normal pressure since 

high pressure would cause discontinuities in the film of lubricant [Kummer and Meyer 

1962]. 

The adhesion component, a result of interface shear forces between the tire and 

pavement, can be expressed as follows [Kummer 1962]:  

ASASF
n

i

ia

1

        (2) 

where:  

S = friction force, 

A = actual tire/pavement contact area, 

Ai= tire/pavement contact area at a specific irregularity (asperity i). 

The hysteresis component is the result of damping losses within the 

rubber.  The hysteresis component can be expressed in terms of energy as follows 

[Kummer 1962]: 

h

n

i

hih E
b

ES
b

F
11

1

       (3) 
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where:  

b = the average spacing between asperities, 

Eh = lumped energy dissipated within the rubber due to the tire deformation, 

Ehi = energy dissipated within the rubber due to the tire deformation at a specific 

irregularity (asperity i). 

As stated earlier, tire/pavement friction is both speed and temperature dependent 

(mainly due to the damping properties of the rubber).  Kummer [1962] investigated the 

effect of speed and temperature and concluded that at low speeds (0 to 16 km/h), the 

adhesion force component of the friction is significantly speed dependent and the 

hysteresis force component shows a little speed dependence (refer to Figure 2).  At high 

speeds (above about 80 km/h), however, the adhesion force remains relatively stable and 

the hysteresis force component increases substantially.  In the range of typical pavement 

temperatures, temperature variation has a similar impact on both adhesion and hysteresis 

components.  As temperature increases, both components decrease [Kummer and Meyer 

1962]. 

 

 

 

 

 

 

Figure 2. Speed dependence of the tire/pavement friction components [Kummer 1962];  
Note: In the current document the symbol “µ”  (rather than “f” as used in this figure) is 

consistently used to denote the coefficient of friction; 1mph = 1.6 km/h.   
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When a tire slides over a rough surface, the tread of the tire will experience 

continuing deformation (composed of compression and relaxation phases).  In the 

compression phase, recoverable deformation energy is stored within the rubber tread.  In 

the relaxation phase, part of the stored energy is recovered and part of the stored energy 

is lost in the form of heat.  The loss of energy as heat is irreversible and may be identified 

as a hysteresis loss. 

Li et al. [2003] created a finite element model to investigate the energy changes 

during braking.  The energy changes caused by braking action on a wet surface were also 

studied by Obertop [1962].  Based on the investigation of heat energy produced in the 

tire/pavement contact area, the author concluded that “the production of steam by the 

transformation of energy causes the decrease of skid-resisting properties of wet surfaces 

at high speeds.”   

 

2.1.3. Friction and Texture Relationships 

Macrotexture has wavelengths of the same magnitude as tire tread elements at the 

tire/pavement interface, and the typical peak to peak amplitudes are about 0.01-20 mm.  

Microtexture makes the surface feel more or less harsh, but is normally too small to be 

observed by the human eye.  The typical peak to peak amplitudes for microtexture are 

about 0.001-0.5 mm.  In addition, megatexture and unevenness are typically reported 

when pavement texture is discussed.  Megatexture is the “deviation of a pavement surface 

from a true planar surface with the characteristic dimension along the surface of 50-500 

mm;” the peak-to peak amplitudes are usually in the range of 0.1-50 mm.  Unevenness is 

defined as “the deviation of a pavement surface from a true planar surface with the 
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characteristic dimension along the surface of more than 0.5 m.” [Henry 1996, Wambold 

et al. 1995] 

An attempt to mathematically describe pavement using a combination of simple 

shapes (cubes, square/pyramids and hemispherical asperities) to better understand the tire 

wearing mechanism was shown by Moore [1975].  Another approach [Vallejo 2001] 

utilized the concept of fractals theory (a mathematical concept used to describe the 

geometry of irregularly shaped objects) and fractal dimensions as a measure of texture. 

Surface texture and friction are integrally related.  In general, microtexture 

contributes to friction at all speeds, but dominates at low speeds (about 50 km/h).  The 

relative influence of microtexture on wet friction is reduced as the speed increases 

[Cenek et al. 1997].  Macrotexture generally controls friction at high speeds [Ergun et al. 

2005].  Only one author was found who reported that macrotexture could significantly 

affect low-speed friction [Liu et al. 2003, Liu et al. 2004].  Pavement texture can be used 

indirectly to determine surface friction [Gunaratne et al. 2000, Wayson 1998].  However, 

using macrotexture alone cannot define the frictional properties of a pavement [Yager 

and Buhlman 1982].   

A relationship between the adhesion component of friction and microtexture size 

was developed by Britton et al. [1975], who found that as the microtexture increases, the 

wet friction will first increase, then stabilize, then finally decrease.  Moreover, the 

relationship between the microtexture size and wet friction resistance also depends on the 

macrotexture characteristics. 

A complex mechanical model to predict tire/pavement friction based on the 

surface texture and tread rubber properties was developed in 1983 [Yandell et al. 1983].  
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The authors verified the proposed model on coarse and fine textured roads and found a 

good relationship between predicted and measured coefficients of friction.  A friction 

model applicable to aircraft tires was proposed in the 1970’s [Wahi 1979].  Model 

parameters included tire characteristics, surface macrotexture depth and fluid 

characteristics (the fluid was assumed to create a film between the tire and pavement). 

Another attempt to predict friction based on texture analysis was presented by 

Ergun et al. [2005].  The authors developed a friction prediction model based on image 

analysis of core samples drilled from pavements and reported a good relationship 

between the predicted values and field measurements.   

 

2.1.4. Changes in Tire/Pavement Friction 

The frictional characteristics of pavements usually change over time and under 

traffic.  The plot of friction values versus the number of wheel passes is commonly called 

the polishing curve.  The slope of this curve is called the polishing rate.  The polishing 

curve generally follows a logarithmic trend to a certain value, frequently reported as the 

terminal friction level, after which the curve flattens and the friction level remains 

essentially constant [Diringer and Barros 1990, Emery et al. 1982, Liang 2007, Shahin 

2005, Wang and Flintsch 2007].  Sometimes, however, the frictional resistance may 

continue to drop because wear continues to reduce the pavement macrotexture, resulting 

in decreasing numbers of channels available for clearing the water from the tire/pavement 

contact area [Roberts et al. 1996].   

It is commonly reported that the frictional properties of a newly paved surface 

improve markedly over the first few months of service.  One study, for example, showed 
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substantial increases in the friction value of a new HMA surface from the time it was 

opened to traffic to 35 weeks later [Saito et al. 1996].  This phenomenon was most likely 

caused by improvement of the surface microtexture resulting from wearing off of the 

binder film coating the aggregates on the surface of the pavement (due to tire action). 

Results of a laboratory study [Vollor and Hanson 2006] showed that the shape of 

the polishing curve may sometimes exhibit a high rate of initial friction loss after the 

binder film is worn off.  After this initial loss, the friction may continue to decrease at a 

lower rate, eventually leveling off.  The high initial rate of friction loss may be due to 

polishing of the originally sharp edges of the exposed aggregate; as these edges are worn 

off or reoriented, the friction decreases.  

Seasonal and short-term variations in pavement friction have also been reported 

and widely studied [Bazlamit and Reza 2005, Flintsch et al. 2005, Gargett 1990, Henry et 

al. 1984, Hill and Henry 1982, Wambold et al. 1989, Wang and Flintsch 2007].  

Depending on the geographical location, the lowest values of wet pavement friction 

typically occur towards the end of summer and the highest occur during the winter.  

Short-term variations are typically caused by temperature fluctuations and precipitation.  

A nonlinear model has been proposed to describe these seasonal variations [Diringer and 

Barros 1990].  Other authors [Huihua and Henry 1990] have proposed using a fuzzy 

clustering approach as a mathematical tool to describe seasonal friction variation.  

Friction changes were also found to be affected by seasonal changes in the grading of 

abrasive material lying on the road or embedded in vehicle tires [Donbavand and Cook 

2005, Woods et al. 1960].   
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As proved in research conducted in the early 1960s [Mahone 1962], friction 

varies across a highway surface.  Typically, the lowest friction is observed in the 

wheelpaths while other portions of the pavement exhibit higher friction.  In addition, due 

to the variations in forces resulting from vehicles decelerating, turning, etc., friction 

varies longitudinally (between straightaways, curves, intersections, and so forth).  The 

author concluded that those differences are more significant for pavements constructed 

with polish-susceptible materials.   

Differences in the friction value between the driving and passing lanes have also 

been reported.  Typically lower friction values are associated with the driving lane 

[Schulze and Beckman 1962].  For some asphalt interstate highways, researchers found 

differences up to 13 SN (skid number, as explained later in section 2.3.3), when measured 

with the ASTM E 274 friction trailer [Li et al. 2003]. 

 

2.2. Pavement Characteristics Contributing to Friction 

The surface texture depth, porosity and surface friction are key parameters in 

pavement safety [Wayson 1998].  Overall, texture is affected by the aggregate size and 

size distribution as well as by the aggregate shape.  The macrotexture is determined by 

the overall properties of the pavement surface and the microtexture is mainly a function 

of the surface texture of the aggregate particles.  “Pavement macrotexture can be 

modified by changing the size and size distribution of the aggregates, while microtexture 

can only be modified by changing the types of aggregates used in the mixture” 

[McDaniel and Coree 2003, also Gardziejczyk 2002].   
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General recommendations for material selection and blend proportioning to 

ensure sufficient frictional properties are summarized elsewhere by Li et al. [2007]. 

 

2.2.1. Material Selection 

Different aggregates vary in their ability to resist undesirable microtexture 

changes.  When worn by traffic, different aggregates polish or become smoother at 

different rates [McDaniel and Coree 2003].  To provide pavement frictional resistance, 

aggregates are commonly selected based on historical data of pavement skid resistance or 

based on laboratory testing.  However, the reliability of predicting aggregate field 

polishing resistance using a single laboratory test is poor [Prasanna et al. 1999].   

From the friction point of view, four aggregate characteristics should be evaluated 

during selection of aggregates for pavement surface courses: microtexture, shape, size, 

and resistance to wear and polishing.  To improve pavement frictional resistance, while 

accommodating the use of locally available low friction aggregate sources, those local 

materials may be combined with aggregates with higher frictional characteristics [Gee 

2005, West et al. 2001].  In many states, the acceptance procedure for friction resistant 

aggregates is based on historical data.  In some cases, the construction and evaluation of 

road test sections over a period of time can also be used; for example, Indiana requires 

monitoring for two years [ITM 214].  Methods to evaluate frictional properties of various 

carbonate aggregates sources were thoroughly investigated by researchers in Indiana 

[West and Cho 2001].   

“Generally, igneous and metamorphic rock constituents polish to a lesser extent 

than sedimentary rocks and should improve the overall frictional resistance of an HMA 
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pavement” [West et al. 2001].  Synthetic aggregates, like slag or expanded lightweight 

aggregate (fabricated by heating natural clay), have also been found to improve pavement 

frictional resistance [Roberts et al. 1996, Wasilewska and Gardziejczyk 2005].    

The Iowa DOT recognizes five different types of aggregates with respect to their 

frictional characteristics [Iowa DOT 2006].  These types are as follows:   

 Type 1: Heterogeneous combination of minerals with coarse grained 

microstructure of very hard particles (generally, a Mohs hardness range of 7 to 9) 

bonded together by a slightly softer matrix  

 Type 2:  Crushed quartzite, granites and air-cooled steel furnace slag, having a 

Mohs hardness of 5-7 

 Type 3: Synthetic aggregates (expanded shales) with LA abrasion loss below 

35%, crushed traprocks and gravels (“gravels shall contain at least 40% igneous 

particles”)  

 Type 4:  Natural gravels (in which carbonate particles shall not exceed the non-

carbonate particles by more than 20%) and “aggregates crushed from dolomitic 

or limestone ledges in which 80% of grains are 20 microns or larger” 

 Type 5:  Aggregates crushed from dolomitic or limestone ledges in which 20% of 

the grains are 30 microns or smaller”.  

An extensive survey comparing states’ requirements for aggregate selection to 

provide pavements that are resistant to polishing was conducted by Liang [2003].  The 

author proposed recommendations for blending high- and low-friction resistant 

aggregates to improve the polish resistance of locally available low friction resistant 

aggregates. 
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It is commonly assumed that aggregates with lower Los Angeles (LA) abrasion 

loss, lower sulfate soundness loss, lower freeze-thaw (F-T) loss, lower absorption and 

higher specific gravity are more desirable from the frictional point of view.  However, the 

LA abrasion loss and other physical tests may not yield good predictions of field friction 

[West and Cho 2001].  Several authors have shown that some aggregates that, based on 

physical tests, may be considered to be of “lower” quality may also (surprisingly) provide 

better frictional resistance.  This may be due to the mineralogy of the aggregate, which 

perhaps influences frictional resistance the most [O’Brien 2004, West and O’Brien 2005].  

For some types of carbonate aggregates (e.g., dolomite) polish susceptibility was found to 

decrease with an increase of clay content (and decrease in specific gravity) [West et al. 

2001].  The authors of another study [Liang and Chyi 2000] found that as the calcite and 

dolomite contents increase, the polish susceptibility of aggregates decreases to the certain 

value.  Further increases in the calcite and dolomite contents result in a loss of polish 

resistance.  The authors of another study observed that there is no relationship between 

polish resistance and the LA abrasion test [Wasilewska and Gardziejczyk 2005].   

An interesting study to compare the influence of the sand source on the frictional 

properties of HMA was presented by Dames [1990].  The author investigated five 

manufactured sand sources (basalt, granite, blast furnace slag, limestone and alpine 

moraine) and one natural sand source.  Dames concluded that highly polished sand 

(limestone) can significantly reduce the frictional resistance of the pavement.  Moreover, 

the influence of the sand properties (occupying typically about 30% of the mixture 

volume) on the frictional characteristics of the pavement was found to be more 

significant than commonly assumed.  
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2.2.2. Mix Proportioning 

Aggregate gradation affects nearly all asphalt mixture properties -- from modulus 

to stability.  Gradations that plot further away from the maximum density line typically 

have higher voids in the mineral aggregate (VMA) contents and thus give higher surface 

texture for a given asphalt volume [Sullivan 2005].   

Three types of HMA mixtures are typically used as surface layers of high traffic 

volume highways: dense graded asphalt (DGA), stone matrix asphalt (SMA, also called  

“stone mastic asphalt” in Europe) and porous friction course (PFC), also called “open 

graded friction course” (OGFC), “porous European mix” (PEM).  Each type of mixture 

has various advantages and limitations.  Within the wide group of conventional dense 

graded HMAs, three sub-groups of mixes can be identified depending on the aggregate 

gradation: fine, coarse and s-shaped. 

Macrotexture of porous friction courses (PFC) is usually higher than that of 

typical dense graded asphalt (DGA), thus enhancing surface friction [Hassan et al. 2005].  

In addition, it is also easier to drain water off such surfaces, thus improving wet friction 

[Ahe 2005, Crocker et al. 2004, Bernhard and Wayson 2005-1].   

The influence of the mix design method on pavement texture was also 

investigated [Stroup-Gardiner et al. 2004].  The authors compared different mixes (nine 

Marshall and nine Superpave mix designs) and road sections (located in Alabama) and 

found that the macrotexture is not statistically different. 

For typically used aggregate sizes, as aggregate spacing (taken as aggregate center 

to center distance or aggregate (texture) wavelength) increases, the coefficient of friction 
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generally decreases [Fwa et al. 2003].  In other research, the same authors stated that 

decreasing the aggregate size would often result in the increase of friction [Liu et al. 

2004]. 

In addition to the gradation, higher (than optimum) binder contents of asphalt 

mixtures will fill some of the voids in mineral aggregate (VMA) and thus lower texture 

[Sullivan 2005].  This would result in reducing friction as well [AASHTO 1976, Woods 

et al. 1960].  Nitta et al. [1990] noticed that changes of mixture components such as 

asphalt content, source of fine aggregate and coarse aggregate gradation do not 

significantly affect the polish susceptibility.  Furthermore the same authors concluded 

that the most important factor affecting the polishing properties of mixtures is the 

exposed area of coarse aggregate on the specimen surface; as the exposed area of coarse 

aggregate increases, the susceptibility to polishing also increases (BPN decreases). 

A relationship between the initial field friction and several mix properties (asphalt 

content, fineness modulus, bulk density and percent of aggregate passing the 4.75 mm 

sieve) was proposed by Goodman et al. [2006].  These authors further concluded that 

there is a good correlation between macrotexture (measured using the sand patch method) 

of field and gyratory compacted specimens.  However, another author [Sullivan 2005] 

stated that there is currently no laboratory test method to predict in-service texture.   

One of the first pavement friction prediction models was developed in the 1980’s 

[Emery et al. 1982].  This model relates friction number with pavement age, accumulated 

traffic level and mix properties (aggregate polish resistance, Marshall sample air content, 

Marshall sample stability and flow).  The authors conducted a field verification of the 
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model and found good correlation between laboratory predicted values and field 

measurements of friction.   

One of the most current models to predict pavement friction and polish 

susceptibility was recently proposed by Luce et al. [2007].  This model is based on the 

mix gradation and changes in aggregate microtexture.  The changes in microtexture were 

evaluated using the Micro-Deval test.  In this test, coarse aggregates are tumbled together 

in a drum with steel balls in the presence of water.  The prediction model was 

successfully verified on nine field test sections.  

 

2.2.3. Pavement Construction and Maintenance Practices 

Although the influence of pavement maintenance, rehabilitation, or reconstruction 

practices on the noise and frictional properties of pavements is known to exist, these are 

not discussed here since the main focus of this study is on techniques to optimize friction 

characteristics.  Non-standard solutions to improve pavement friction (e.g., placing of 

steel patterned elements into the asphalt pavement) are also discussed elsewhere [Clark 

1975].  In addition, only the wet friction phenomenon on flexible pavement is discussed 

here.  Such issues as friction on unpaved roads, friction on compacted snow-covered or 

ice-covered roads and issues related to “black ice” are considered elsewhere [e.g. by Lea 

and Jones 2006, Yager 1990, Trevino et al. 2007].   

There are no special finishing techniques associated with asphalt pavement 

construction which would significantly influence future frictional properties of the 

pavement.  Typical good engineering practice has to be followed, especially with proper 

mixture temperature and compaction level.   
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One publication was found [Crispino et al. 2007] which related pavement 

macrotexture with the roller type and rolling technique used during the construction 

process.  Based on tests using three different mixture types and four different roller types, 

the authors found that the total static load (sum of all static linear loads from the roller 

drums over a fixed section) correlates well with the surface macrotexture of the 

compacted pavement. 

 

2.3. Friction / Texture Measurements and Polishing Methods 

2.3.1. Friction Measurement Techniques 

The locked wheel friction trailer described in ASTM E 274 is routinely used to 

monitor wet pavement frictional characteristics in most states [Murad and Abaza 2006] 

and is widely described in the literature [e.g. Wambold et al. 1990].  It is commonly 

assumed that the friction measurements conducted with a smooth tire are sensitive to 

changes in both micro- and macrotexture while measurements with a rib tire are 

dependent on the microtexture only [Henry 2000, Wambold et al. 1996].  Typically 

measurements are conducted at a speed of 64 km/h (40 mph).  However, due to safety 

issues, tests on some roads are conducted at 81 km/h (50 mph) or at 48 km/h (30 mph).  It 

should be noted that there is no unique friction/speed correlation and that the existing 

correlations vary with pavement surface texture [Li et al. 2003, Li et al. 2005].  An 

attempt to determine such a friction/speed correlation is presented in section 2.3.3. 

Other commonly used types of full scale friction measuring devices are as follows 

[Henry 2000]: side force (ASTM E 670), variable slip (ASTM E 1859 and ASTM E 

1337) and fixed slip.  In addition, field measurements can be conducted by measuring the 
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stopping distance of a passenger vehicle (ASTM E 503/E 503M and ASTM E 445/E 

445M). 

Currently, the two most popular portable devices, which can be used either in the 

lab or in the field, are the British (Pendulum) Skid Resistance Tester (BSRT) and 

Dynamic Friction Tester (DFT).  The BSRT (standardized in ASTM E 303) is 

traditionally the most popular, widely described [e.g. Giles et al. 1962, Liu et al. 2003] 

test method for pavement friction measurements; however the calibration procedure for 

this device is complex and time consuming [Kulakowski et al. 1990].  It should be 

remembered, however, that even when properly calibrated the BP test only gives relative 

comparisons for frictional properties of surfaces.  The results obtained with it may not 

compare to other test methods [ASTM E 303]. 

Introduced in the 1990’s and also standardized [ASTM E 1911], the DFT is a 

device that is relatively simple to use.  It should be noted that this machine operates in a 

similar way to the laboratory skid testing machine used at Berlin Technical University 

from the 1960’s [Dames 1990].  Berlin’s machine, however, could be used in the 

laboratory only.  A strong relationship between the coefficient of friction measured with 

DFT and BSRT devices has been reported [Saito et al. 1996].  Both the DFT and BSRT 

devices were used in the present study.  These are described in detail in sections 3.3.1.2 

and 3.3.2.2 respectively.   

Friction measurement methods which can be conducted in the laboratory were 

compared in the Interim Report [McDaniel and Coree 2003] and are also repeated here in 

Appendix A in Table A 1.  A list of the laboratory friction measurement devices used in 

the past (in the 1960’s) is shown elsewhere [Woods et al. 1960]. 
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2.3.2. Texture Measurement Techniques 

There are three general types of texture measurement techniques [Abe et al. 2001, 

Wambold et al. 1995]: volumetric (measures mean texture depth, MTD), outflow meter 

(measures outflow time, OFT) and profilometer (mostly used for the measurement of the 

mean profile depth, MPD).   

Historically, the most common technique used for macrotexture measurements 

was the sand patch method, a volumetric technique which is standardized in ASTM E 

965.  This is a relatively simple and inexpensive method, however, poor repeatability in 

the measurements has been reported [Doty 1975, Yager and Buhlman 1982].   

The outflow meter, standardized in ASTM E 2380, measures the drainage 

capability of pavements as affected by macrotexture and porosity.  It has been widely 

studied elsewhere [Henry and Hegmon 1975].  The outflow meter is highly correlated 

with the MPD and MTD for nonporous pavements.  For porous surfaces, comparison of 

the OFT and MTD can potentially be used for assessment of the effectiveness of the 

porous structure for draining water [Henry and Hegmon 1975].   

In general, there are three major types of profilometers: laser based, light 

sectioning and stylus contact followers (the last two are currently infrequently used in 

general highway applications).  Some profilometers allow for texture measurement at 

traffic speeds using a mobile device attached to a vehicle (high-speed measurement); 

such a technique is widely used in Pavement Management Systems (PMS).  A feasibility 

study of laser based pavement texture measurements was published as early as in the 

1970’s [Gee et al. 1975].   
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One of the laser-based profilometers currently used is the Circular Track Meter 

(CTM), which was utilized in this study and is described in detail in Chapter 3.  The 

CTM (standardized in ASTM E 2157) offers a quick and simple way to conduct texture 

measurements.  The variability of the sand patch test and CTM methods was compared 

by Hanson and Prowell [2004, 2006, Prowell and Hanson 2005].  The researchers found 

that both techniques produce comparable results.  However, the CTM offers the 

advantage of characterizing the variation in texture over an area rather than just 

measuring the average texture over an area, as the sand patch does.   

Other scientists [McGhee and Flintsch 2003] conducted an extensive study to 

compare the reliability of different texture measurement techniques: sand patch method, 

CTM and two different mobile laser based profilometers (called also high speed or 

dynamic devices).  They found a very good correlation between those various techniques.  

 Texture measurement methods which can be conducted in the laboratory are 

compared in Appendix A in Table A 2.   

Measurement of aggregate shape (e.g. image analysis) is discussed elsewhere 

[Masad et al. 2004]). 

 

2.3.3. Harmonization of Friction and Texture Test Results 

It is recognized that the methods and systems used for measuring texture and 

friction throughout the world vary significantly.  Frictional resistance can be reported in 

terms of friction coefficient (μ), British Pendulum Number (BPN), the International 

Friction Index (IFI), skid number (SN) or friction number (FN) [Henry 2000]. 
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The International Friction Index (IFI) was developed in an attempt to harmonize 

texture and friction measured using different test methods [Henry 1996, Henry et al. 

2000-1, Wambold et al. 1989, Wambold et al. 1995, Wambold 2005, Yeaman 2005].  

During an international PIARC study [Wambold et al. 1995], 47 different measuring 

systems from 16 countries were used to measure 54 pavement sections located in Spain 

and Belgium.  These measurements resulted in 15,000 numerical values that were 

included in the database for the PIARC study and were subsequently used to develop the 

PIARC friction model.   

The PIARC model developed in this study is a modification of the Penn State 

Model, which relates friction (Fμ) to slip speed (S).  As reported by Wambold et al. 

[1996], the “Penn State model utilizes two constants, where one is a function of 

microtexture (F0) and other, called the speed constant (Sp), is a function of macrotexture.”  

This relation is given below (Eq. 4) as: 

pS

S

eFSF 0)(        (4) 

The slip speed (S) is defined as the difference between the traveling speed of the 

measuring device and the speed of a point on the perimeter of the rotating measuring 

wheel [ASTM E1859]. 

Based on the measurements conducted during the international PIARC study, a 

friction-slip speed curve was established for each site tested (nicknamed a “golden 

curve”).  Then, a model was developed in such a way that data from each type of 

equipment that participated in the study can be used to predict the golden curve values 

(by applying a specific calibration factor or factors).  It was decided for harmonization 
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purposes that all measured friction values be  reported at a speed of 60 km/h.  The steps 

used to evaluate friction using the PIARC model procedure are shown below [Wambold 

et al. 1996]. 

1. First, based on the texture measurements, the speed constant (Sp) is calculated 

using Equation 5: 

TxbaS p        (5) 

where “a” and “b” are unique calibration constants developed for each texture 

measuring device participating in the study and Tx is a  measure. 

2. Then, the value of the friction measured at any slip speed (FRS) is converted to 

friction at a slip speed of 60 km/h (FR60); note that various friction devices 

operate at different speeds: 

pS

S

eFRSFR

60

60        (6) 

3. Finally, the FR60 is recalculated to the unified value (value located on the golden 

curve) to give the estimated value of friction at a speed of 60 km/h (F60): 

TxCFRBAF 6060        (7) 

where “A,” “B,” and “C” are unique calibration constants developed for each 

friction device participating in the study; constant C is equal to 0 for most devices 

except those using rib or patterned tires. 

Based on the PIARC model, an International Friction Index (IFI) was proposed.  The IFI 

(currently standardized in ASTM E 1960) consists of two parameters: the calibrated wet 

friction at 60 km/h (F60) and the speed constant of wet pavement friction (Sp).  The 

International Friction Index is simply reported as the values of these two parameters, i.e. 
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IFI (F60, Sp).  Both F60 and Sp are estimates of the golden curve.  These parameters are 

defined as follows:   

 The F60 represents the average wet coefficient of friction experienced by a 

passenger car during a locked-wheel slide at speed of 60 km/h.  The Sp is a measure of 

how strongly the pavement wet friction depends on the sliding speed of a passenger car 

(high Sp value indicates a low sensitivity to slip speed). [Cenek et al. 1997].   

 In addition to allowing calculation of IFI, the PIARC model can also be used to 

predict friction values at speeds other than that at which the friction was measured.  

Using the two IFI parameters (F60 and Sp), the wet friction at any slip speed can be 

estimated as follows:  

pS

S

eFSF

60

60)(        (8) 

As shown in the ASTM E 1960 specification, the IFI parameters can be 

determined using the DFT and CTM devices.  Moreover, using those two devices and 

following ASTM E 1960, other devices (which did not participate in the international 

PIARC study) could also be calibrated to predict the IFI parameters.   

An example of how the DFT and CTM machines were calibrated to predict the 

IFI parameters is shown below.  During the international PIARC study, unique 

calibration constants were developed for the CTM (a=14.235 and b=89.719746) and the 

DFT (when the device measures the friction at 20 km/h, A=0.08114 and B=0.73158).  

Note that neither rib nor patterned tires are used in this device, so the constant C is equal 

to zero.  Applying those constants, the F60 and Sp can be expressed as follows: 
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SpeDFF

40

20732.0081.060        (9) 

 

   MPDS p 7.892.14             (10) 

where: 

DF20 = wet friction number measured at the speed of 20 km/h, 

MPD = mean profile depth (mm).    

These are the same equations as used in the ASTM E 1960 (2007) specification.  

The influence of changes in DF20 and MPD values on the calculated calibrated wet 

friction (F60) is shown in Figure 3, as determined using equations 9 and 10.  It should be 

noted that in the range of typical friction and texture values observed on asphalt 

highways, changes in the wet friction (DF20) influence the calibrated wet friction (F60) 

much more than changes in macrotexture (MPD).  Moreover, in a low range of DF20 or 

MPD values, the influence of changes in the second parameter (MPD or DF20, 

respectively) is less significant than in the high range of DF20 or MPD values. 
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Figure 3. Influence on the calibrated wet friction (F60) of: (a) DF20 and (b) MPD values 
Note: the ranges of the typical highway pavement values of DF20 and MPD are shown,  

as determined in a baseline study described in section 4.2.1.2. 

 

It should be noted that the calculation of the value of the speed constant of wet 

pavement friction is related to the texture measurement device.  There were several 

attempts to relate the Sp to MPD.  Some of the relations came from a calculation based on 

the relationship between MPD and MTD (measured using volumetric sand patch method) 

[Henry et al. 2000, Henry 2006].  The ASTM E 1960 (2007) version of the Sp equation 
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used consistently in this study is shown above in equation 10.  As previously mentioned, 

this ASTM version was developed based on the international PIARC study [Wambold et 

al. 1995].  The ASTM E 1845 (2005) specification defines the MPD as “the average of all 

of the mean segment depths of all of the segments of the profile,” where mean segment 

depth is “the average value of the profile depth of the two halves of a segment having a 

given baselength,” and profile depth is “the difference between the amplitude 

measurements of pavement macrotexture and a horizontal line through the top of the 

highest peak within a given baseline.” 

Although, according to ASTM E 1960, all other friction measuring devices have 

to be related to the DFT to determine the constants, the international PIARC study 

determined those constants directly for other machines.  Results of the international 

PIARC study are especially useful if one would like to determine the IFI parameters for 

pavement friction tested using the ASTM E 274 (2006) locked wheel friction trailer 

(which, as mentioned before, is routinely used in the USA).  For the friction trailer using 

a smooth tire, the unique calibration constants would be: A= 0.04461 and B=0.92549; for 

the friction trailer using a rib tire, the unique calibration constants would be different: A= 

-0.02283, B=0.60682 and C=0.097589 [Wambold et al., 1995].   

Thus, the F60 value for the locked wheel friction trailer using smooth tire would 

be: 

SpeSSNF

4

)64(01.0925.0045.060        (11) 

 

where: 

SN(64)S = skid number measured at test speed of 64 km/h using smooth tire. 
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Note that the SN value is reported in a range between 1 to 100 while typically friction is 

reported in a range between 0 to 1; thus, the SN value in the equation should be divided 

by 100. 

 Obviously, if the test were conducted at another speed, a more general form of 

this equation would have to be used: 

Sp

S

eSSSNF

60

)(01.0925.0045.060        (12) 

 

 For the locked wheel friction trailer using a rib tire, the F60 would be calculated 

as follows: 

MPDeRSNF Sp 098.0)64(01.0607.0023.060

4

   (13) 

 

where: 

SN(64)R = skid number measured at test speed of 64 km/h using rib tire.   

 

Note again that the SN value is reported in a range between 1 to 100 while typically 

friction is reported in a range between 0 to 1; thus, the SN value in the equation should be 

divided by 100.  

 It should be noted, however, that during standard operations with a friction trailer, 

the texture is not measured.  Thus, the Sp value, which is applied to the model, is not 

determined.  However, if the same section were tested at the same speed with both rib 

and smooth tires, equations 11 and 13 should be equal.  Moreover, if those equations 

were compared, there would be only two unknowns present: MPD and Sp.  Since, as 

shown in equation 10, Sp is truly the MPD modified by some constants, only one 

unknown is actually present.  Then, the Sp (or MPD) value could be obtained and both IFI 
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parameters could be reported.  Finally, one additional comment has to be added: the 

constants were empirically determined and during any kind of test an error is always 

incorporated.  Using mathematical transformations, the errors could be multiplied.  Thus, 

although theoretically correct, this potential MPD determination method should be 

further verified. 

It should also be recognized that when using a calibrated friction device to report 

friction values at a range of slip-speeds (e.g., DFT machine), the Sp (or MPD) also could 

be determined.  Thus, the additional texture measuring device would not be necessary.  

Similarly, the earlier comment about the mathematical transformation and introduced 

errors is applicable here as well. 

 

2.3.4. Polishing Methods 

The most widely used device to accelerate the polishing of coarse aggregates is 

the British Polishing Wheel, standardized in ASTM D 3319, then the changes in the 

microtexture are typically measured using a BSRT device.  “However, this method 

evaluates only loss of microtexture of the coarse aggregate fraction, neglecting any 

contributions of the fine aggregate or the pavement macrotexture” [McDaniel and Coree 

2003].  Another method to evaluate changes in microtexture caused by accelerated 

polishing was developed by Cafiso and Taormina [2007], who used a scanning procedure 

able to capture aggregate texture with resolution as fine as one micron.   

Currently, there is no widely accepted method which would allow observing 

changes in both micro- and macrotexture of HMA specimens as a result of the polishing 

action of tires.  Machines used in the past include the Penn State Reciprocating Polishing 



 

 

34 

Machine, North Carolina State Wear and Polishing Machine and Michigan Wear Track 

[McDaniel and Coree, 2003].  The first of these was standardized in ASTM E 1393, but 

since it was never widely used the specification was discontinued in 1997.  The North 

Carolina State University (NCSU) Wear and Polishing Machine, standardized in ASTM 

E 660, is also not very widely used.  The Michigan Wear Track is reportedly still used for 

aggregate evaluations, but only in Michigan.  A machine similar to the Michigan device 

is the Wehner/Schulze polishing machine located at Berlin Technical University.  This 

machine operates with flat, circular specimens (22.5 cm in diameter) and the polishing 

effect of tires is simulated by three conical rubber rollers.  In order to accelerate the 

polishing process, water containing an abrasive additive (quartz powder) is used [Dames 

1990].  

Another polishing machine which could be used to study changes in both micro- 

and macrotexture was proposed by the National Center of Asphalt Technology (NCAT) 

[Vollor and Hanson 2006].  The NCAT polishing machine is similar to that used in this 

study and is described in detail in section 3.3.1.2 of this report. 

Various accelerated methods for polishing of aggregates and mixes are compared 

in Appendix A in Table A 3.  A list of the polishing devices used in the past (in the 

1960’s) is given elsewhere [Woods et al. 1960]. 

Finally, although it is not a polishing method, a recently presented [Ech et al. 

2007] test procedure offers a rather unique technique to evaluate changes in road surface 

macrotexture.  The authors introduced a mechanical device which, via a rubber 

cylindrical membrane, transmits repeated vertical stresses to the tested specimen.  Then, 

using a laser technique, changes in the macrotexture can be evaluated. 
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2.4. Pavement Quality: Friction Requirements 

Pavement quality is a function of highway structural and functional performance.  

The functional performance of a pavement concerns how well the pavement serves the 

user.  For drivers, good quality pavement should provide safe and comfortable riding 

while for highway neighborhoods noise coming from the roadway should be minimized.  

As a part of pavement quality monitoring, surface roughness and distresses (cracking, 

patching, rutting, etc.) are typically investigated.  Functional performance, mainly 

affected by the pavement texture (micro-, macro-, and mega- texture), has a major impact 

on the tire/pavement interaction.  This interaction affects both friction and noise 

properties of the pavement.  Moreover, agencies and highway users are concerned about 

the frequency of repairs needed when the pavement performance is not adequate; the 

period between highway rehabilitations defines its durability [Larson et al. 2005]. 

As stated earlier, the frictional characteristics of pavements usually change over 

time and traffic.  The deterioration of tire/pavement friction below a minimum acceptable 

(safe) level prevents the pavement from serving its desired function [Roberts 1996].  The 

need for a minimum friction number has been recognized by different interest groups, 

including law enforcement [Hutchinson 1975].  However, due the various legal issues, 

minimum acceptable friction level requirements have not been published or universally 

adopted.  Instead, most agencies are currently using a so-called “friction flag value.”  The 

flag value is defined as the friction number at or below which a site investigation needs to 

be conducted [Li et al. 2003]. 
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Murad and Abaza [2006] proposed a mathematical method (based on the friction 

and accident history of pavements) to determine sections with possible skidding accident 

potential.  . 

For example, in the State of Indiana, the INDOT pavement inventory friction test 

program covers all interstates, state routes and U.S. routes.  Inventory tests are conducted 

annually on interstates and every three years on other roads [Li et al. 2005].  Highways 

with friction numbers at or below the flag value are field inspected by the appropriate 

INDOT district to evaluate the pavement conditions and to determine if resurfacing is 

necessary [Li et al. 2003]. 

A similar concept of the investigatory level of frictional resistance has also been 

proposed and followed in Great Britain.  In Great Britain, however, the pavement friction 

flag value depends on the road category and location.  A total of 13 investigatory levels 

have been defined.  “Frictional demand will be greater at sites which are geometrically 

substandard and also at high-conflict sites, such as intersections or pedestrian crossings, 

where emergency situations frequently arise, resulting in the need for the vehicle to brake 

sharply or swerve to avoid collision” [Garett 1990, Kennedy 1990]. 

An extensive review to identify currently followed friction requirements was 

conducted by Henry [2000].  Neither national nor state requirements were reported; 

however, the existence of friction flag values was identified in most states.  Although the 

friction flag values vary from state to state, it appears that most of them were developed 

based on the findings from an NCHRP study to determine the recommended minimum 

friction value conducted in the 1960’s [Kummer and Meyer 1967].  During this study 

researchers analyzed a large group of factors, including driver behavior, friction level 
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versus wet accidents, and friction level versus highway maintenance costs.  They 

recommended minimum requirements for BPN and SN values (at 64 km/h with a rib 

tire).  In the final conclusions, the authors relate the recommended values of SN and BPN 

to the mean traffic speed on the investigated highways, as shown in Table 1.   

Table 1. Recommended minimum friction requirements [after Kummer and Meyer 1967]  

Mean Traffic Speed, 

km/h 

Skid Number, 

SN
a
 

British Pendulum Number, 

BPN 

48 31 35 

64 33 40 

81 37 45 

97 41 50 

113 46 --- 

129 51 --- 

a
 ASTM E-274 friction trailer test conducted at 64 km/h using rib tire  

In the State of Indiana, INDOT utilized Kummer and Meyer’s findings to 

determine the friction flag value for the trailer using a smooth tire (at 64 km/h).  During 

the analysis, the recommended skid number for roads with a mean traffic speed of 81 

km/h was selected (SN=37) and then this recommended SN value was converted to the 

average results which could be expected with the smooth tire (instead of the rib).  INDOT 

conducted tests and concluded that “the average friction difference for slick concrete, 

asphalt surface and network pavements is 18,” when results from smooth and rib tires are 

compared.  Then, subtracting 18 from the SN=37 results in the flag value of 19.  

Therefore INDOT recommended and follows a friction flag value of 20 (for smooth tire 

test conducted at 64 km/h) during all inventory tests.  In addition, INDOT conducted 

other statistical analyses and concluded that such a flag value is economically reasonable 

for the INDOT pavement program [Li et al. 2003]. 
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During the international PIARC study [Wambold et al. 1996] it was concluded 

that friction requirements could be developed based on IFI parameters.  Once the 

minimum values of F60 and Sp were determined, based on the friction/texture 

relationship, pavements could easily be classified in one of four groups, as: (1) good, (2) 

with low microtexture but with a satisfactory level of macrotexture, (3) with a 

satisfactory level of microtexture but with low macrotexture and (4) with both low micro- 

and macrotexture.  Based on this evaluation, the appropriate maintenance action could be 

determined.  This study did not, however, provide any suggestions with respect to the 

required friction values.  

New Zealand is one country which was found to implement the IFI method to 

monitor and evaluate the highway friction level.  Similar to the practice existing in Great 

Britain (as explained earlier), the requirements depend on the investigated section 

characteristics (type of traffic, geometric parameters, etc.).  For each section type, 

investigatory and threshold levels of IFI are defined using both F60 and Sp parameters 

[Yeaman 2005].  The investigatory level is defined by F60 values of 0.22 to 0.30 and Sp 

values of about 76 to 95 km/h.  The threshold level is defined by F60 values of 0.15 to 

0.20 and Sp values of 60 to 75 km/h. 

Although airport runways are not a main subject of this study, those pavements 

are a good example of a complete friction policy (including testing frequency and the 

minimum friction requirements) [Advisory Circular 1997].  It should be noted, however, 

that in the case of runways the need for maintenance is not only due to friction loss 

resulting from surface polishing, but also due to friction loss caused by tire rubber 

deposits. 
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CHAPTER THREE: TEST PROGRAM 

 

The following sections describe the materials studied, experimental plan, 

equipment used, specimen preparation and testing techniques employed in various parts 

of this study. 

3.1. Materials 

Currently, a common practice for improving polishing resistance of pavements 

with carbonate aggregates is to substitute a portion of the carbonate aggregate with a 

“high friction” aggregate.  During this study, mixes with different types of aggregates 

combined in various proportions were studied.  These mixes were evaluated either during 

the field or laboratory part of the study, as described below. 

 

3.1.1. Laboratory Study 

Four types of coarse aggregate and two types of fine aggregate were used in the 

laboratory mix preparation.  The coarse aggregates were selected based on their frictional 

characteristics and an attempt was made to include in this study a wide range of 

aggregates commonly used in the north central part of the USA.  As shown in Table 2, 

the coarse aggregates included two friction aggregate types (called FAT): quartzite and 

steel slag.  Quartzite, called Q, was imported from South Dakota, and steel slag, called 

SS, was supplied by a source located in northern Indiana.  Coarse aggregates also 

included two carbonate aggregate types (called CAT): dolomite and limestone.  In this 

study, dolomite from the Wabash formation (steeply inclined dolostone, called D), and 

two sources of limestone were used.  To differentiate these two sources in this research, 
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the higher quality (i.e., higher friction and polishing resistant) limestone is called “hard” 

limestone (HL) and the lower frictional quality limestone is called “soft” limestone (SL).  

The HL limestone is a “normal” limestone from the Louisville formation, and the SL 

limestone comes from the Salem formation; SL contains oolitic bodies, has high LA 

abrasion values and polishes substantially when exposed to traffic.   

All the aggregate blends used in this study contained two types of fine aggregates: 

natural (siliceous) sand (NS) and manufactured (crushed dolomite) fine sand (MS).  

These two sands were used in every mix, although in varying amounts (see Table 4 in 

section 3.3.1.1).   

Table 2. Physical properties of aggregates used in the laboratory part of the study 

Type Aggregate Symbol Bulk Spec. 

Grav. 

Absorp-

tion [%] 

C
o
ar

se
 A

g
g
re

g
at

e
 Polishing 

Resistant 
FAT 

Quartzite Q 2.63 0.2 

Steel Slag SS 3.60 1.1 

Polishable CAT 

Dolomite D 2.68 1.1 

Hard 

Limestone 
HL 2.63 1.5 

Soft 

Limestone 
SL 2.47 3.3 

          Fine Aggregate 

Natural Sand NS 2.57 1.7 

Manufactured 

Sand 
MS 2.74 1.2 

 

 

Specific gravity and absorption test results (obtained according to AASHTO T 85 

(2004) for coarse aggregates and AASHTO T 84 (2004) for fine aggregates) are shown in 

Table 2.  Specific gravities of the natural aggregates ranged from 2.47 to 2.74; the 

specific gravity of the steel slag was found to be about 3.61.  The quartzite had the lowest 
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absorption (0.2%) while the absorption of the soft limestone was the highest (3.3%).  

Absorption of all other aggregates was between 1.1% and 1.7%. 

The uncompacted air void content (determined according to AASHTO T 304 

(2004)) was 40.9% for the natural sand and 49.0% for the fine manufactured sand.  All 

coarse aggregates used in this study contained more than 95% particles with two 

fractured faces (tested according to ASTM D 5821 (2006)).  The sand equivalent values 

(tested according to AASHTO T 176 (2002)) of all of the aggregates used in the study 

were higher than the required 45% for roadways with 3 to 10 or 10 to 30 ESAL (as per 

AASHTO M 323 (2004).  All the coarse aggregates used in this study met the flat and 

elongated particles requirement (maximum 10% of these particles present per AASHTO 

M 323 (2004)) with less than 5% actually present, when tested according to 

ASTM D 4791 (2005).   

The gradation of each of the individual types of aggregate was determined 

following the ASTM C 136 (2006) specification.  The final gradation used in the 

production of the HMA mixes was obtained by blending individual fractions in 

proportions specified in the mix design.  Each aggregate source was sieved and separated 

into individual size fractions so the final combined gradation could be tightly controlled. 

An unmodified PG 64-22 binder was used to prepare the laboratory mixtures.  

The specific gravity of this binder, tested according to AASHTO T 228 (2006) at 25ºC 

(77ºF), was Pb = 1.028.  Although none of the other properties of the binder were tested in 

this study, this binder was obtained from an INDOT certified asphalt supplier and thus it 

was assumed that it met all Superpave requirements for a PG 64-22 grade specified in 

AASHTO M 320 (2005).   
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3.1.2. Field Study 

During this study, different existing road sections were investigated.  The 

composition of the two concrete and 23 HMA mixes used in the construction of these 

sections varied with respect to the aggregate and binder sources and mixture proportions.  

The mineral components of the HMAs included steel slag, blast furnace slag, dolomite, 

limestone, quartzite, gravel, crushed gravel, natural and manufactured (crushed dolomite 

and crushed quartzite) sands, mineral fillers and cellulose.  Binders used during this 

portion of the study included: PG 58-28, PG 64-22, PG 64-28, PG 70-22, PG 76-22, AC-

5, AC-10 and AC-20; the PG 76-22 was an SBS modified binder. 

The concrete mixture was composed of type I portland cement, class C fly ash, 

fine aggregate (washed manufactured sand), coarse aggregate (dolomite), air entraining 

agent, water reducing admixture and potable water. 

 

3.2. Experimental Plan 

As mentioned in the first chapter, the main purpose of this study was to evaluate 

the influence of various blends of aggregates on the resulting micro- and macrotexture of 

HMA.  In order to do this it was necessary to develop a laboratory device (and testing 

procedure) to accelerate the polishing of pavement surfaces and to evaluate their 

frictional characteristics.  Based on the literature study and field measurements, the 

International Friction Index (IFI), IFI flag value and IFI baseline values (for the 

laboratory tests) were developed.  The general plan of the study is shown in Figure 4. 
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Figure 4. General plan for the field and laboratory study of the HMA mixtures 

 

During the laboratory part of the study, conventional dense graded HMA 

(Superpave) mixes were fabricated and tested using slabs produced from these mixes.   

The following factors, potentially influencing frictional properties, were investigated:  
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 three carbonate aggregate types (CAT = D, HL and SL), 

 five high friction resistance aggregate contents (called FAC; FAC = 0%, 10%, 

20%, 40% and 70%), 

 three mixture gradations (G = C, F and S), 

 two aggregate sizes (NMAS = 9.5 mm and 19 mm). 

For practical reasons (due to budget and time limitations), testing of all possible 

combinations of materials was not possible as the full test matrix would contain 180 cells 

(2 FAT x 3 CAT x 5 FAC x 3 G x 2 NMAS).  Therefore, a partial factorial design was 

implemented. Cells to be tested were selected considering the need to evaluate different 

combinations of the factors (FAT, CAT, FAC, G and NMAS) mentioned above. 

In the adopted test program, the frictional properties of 46 laboratory prepared 

samples were evaluated based on three test matrices (see Figure 5).  In the main matrix 

(Matrix I), 36 different mixes (2 FAT x 3 CAT x 3 G x 2 NMAS) were tested (refer to 

Table 3).  All mixes contained the same friction aggregate content (FAC) equal to 20%. 
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Figure 5. Schematic of the experimental design: Matrices I to III 
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NMAS (9.5 mm) but differed in the FAC and FAT.  Five levels of FAC (0%, 10%, 20%, 

40% and 70%) and two types of FAT (Q and SS) were studied (refer to Figure 5 and  

Table 3). 

Table 3. Number of variables and cells compared during the laboratory tests (only 

laboratory mixtures are shown)  

Factor Symbol Matrix I Matrix II Matrix III 

Aggregate Size NMAS 2 1 1 

Friction Aggregate Type FAT 2 2
a
 1 

Friction Aggregate Content FAC 1 5
b
 2

b
 

Carbonate Aggregate Type CAT 3 1 3 

Gradation G 3 1 1 

Total Number of Cells 36 9
b
 6

b
 

a
 At the FAC level of 0%, no FAT was used. 

b
 Specimens with FAC=20% were tested in Matrix I 

 

During the sample preparation stage, laboratory produced HMAs were compacted 

into wooden molds and polished in a specially developed laboratory polisher.  In order to 

obtain the frictional resistance curve, friction and texture measurements were performed 

directly after sample compaction and periodically during the polishing process. 

In addition to the conventional HMA mixes (shown in Figure 5), plant produced 

SMA and PFC mixes were also tested in the lab in the same way as the lab produced 

mixes.  Those two mixes were collected during field construction. 

Due to time and cost limitations, only one specimen (per cell) was tested in the 

laboratory except for the plant produced SMA and PFC mixes.  Based on laboratory 

observation, a relationship between all the factors mentioned above (FAT, CAT, FAC, G 

and NMAS) was developed.  Because of the number of factors being evaluated, there are 

many comparisons that can be drawn.  The null hypothesis in each case was that the 
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friction levels for different factor combinations were equal (μ1=μ2=μ3=…).  The 

alternative hypothesis was that the friction levels were not equal.  It was anticipated that 

the null hypothesis would be rejected for many of the possible comparisons.   

In addition to the laboratory tests conducted in this study, field experiments were 

also performed.  The main purpose of the field tests was to develop a baseline for the 

friction requirements for the laboratory measurements.  The Indiana Department of 

Transportation (INDOT), for example, compares the skid number (SN) obtained from the 

ASTM towed friction trailer to a so-called friction “flag value” to identify potentially low 

friction pavements; a study to convert the SN-based flag value to an International Friction 

Index (IFI)-based flag value is reported here.  The IFI-based flag value is more universal 

and allows for easier comparison of laboratory and field-generated friction data.  During 

the study, mostly HMA pavements were tested in Indiana and Iowa.  However, two 

concrete sections were also investigated.  Pavements in different conditions (from one to 

23 years old), subjected to different traffic levels (county roads, state roads and interstate 

highways) were tested.  During the selection of the test sections, an attempt was made to 

investigate the frictional properties of pavements with low, medium and high friction 

values, constructed at different times and from different materials.  

The second purpose of the field tests was to investigate changes in friction and 

texture taking place in the pavement over the time.  One mix of each type (Superpave 

HMA, SMA and PFC) was tested periodically, about three times per year, beginning 

from the initial point around the time when the road was opened to the traffic for four 

years. 
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3.3. Sample Properties Characterization 

In this section the composition (aggregate gradation and binder content) of the 

laboratory and field tested mixtures is described. 

 

3.3.1. Laboratory Study 

 

3.3.1.1 Aggregate Blend Gradation 

Dense graded Superpave mixes were tested during the laboratory part of this 

study.  Three aggregate gradations (G = C, F and S)) and two NMAS (9.5 mm and 19 

mm) were examined.  The aggregate gradations met the gradation control points as 

required by AASHTO M 323 (2004).  In addition, they avoided the gradation restricted 

zone, which is not required by the current AASHTO standards but was formerly used in 

Superpave mix design. 

Target gradations of six types of aggregate blends are shown Figures 6 and 7.  

Gradation types included fine, coarse and s-shaped gradations (called 95_F, 95_C, 95_S, 

respectively, for aggregate with 9.5 mm NMAS and called 19_F, 19_C, 19_S, 

respectively, for aggregate with 19.0 mm NMAS).  Mixes with such gradations are 

commonly used as surface layers in various parts of the USA. 
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Figure 6. Aggregate gradations for mixes with 9.5 mm NMAS 

0

20

40

60

80

100

Sieve size, mm

C
u
m

u
la

ti
v
e
 %

 P
a
s
s
in

g

0.075 1.180.60.3 19 12.59.52.36 25

Fine gradation, 

F

S-shaped gradation, 

S

Coarse gradation, 

C

 

Figure 7. Aggregate gradations for mixes with 19 mm NMAS 
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One of the methods used to quantify and to compare aggregate gradation is the 

fineness modulus (FM).  Generally, the fineness modulus is used in the design of portland 

cement concrete (PCC) mixtures to describe a weighted average of the gradation of the 

aggregate being analyzed.  The fineness modulus is obtained by adding the sum of the 

cumulative percentages (by mass) of a sample aggregate retained on each of a specified 

series of sieves and dividing the sum by 100.  The specified sieves are: No. 100 (150 

μm), No. 50 (300 μm), No. 30 (600 μm), No. 16 (1.18 mm), No. 8 (2.36 mm), and No. 4 

(4.75 mm), and 3/8 in. (9.5 mm), 3/4-in. (19.0mm), 1-1/2 in. (37.5 mm), and larger, 

increasing at a ratio of 2 to 1 [ASTM C 125 (2006)].  The FM calculated for mixes tested 

in Matrix I is shown in Table 4.  For mixes with 9.5 mm NMAS the FM is smaller than 

for those with 19 mm NMAS.  In addition, for both groups of mixes (with NMAS of 9.5 

and 19 mm), the smallest FM was noticed for mixes with fine type of gradation, medium 

for mixes with s-shaped gradation and the highest for mixes with coarse type of 

gradation, as expected. 

For each sample evaluated in Matrix I, the aggregate blend was composed of the 

FAT, CAT, NS and MS in the proportions shown in Table 4.  For Matrix II, only one 

aggregate blend (95_S) was evaluated while for Matrix III only the 95_C blend was 

investigated.  (Steel slag was used as the friction aggregate in Matrix II because of the 

limited amount of imported quartzite available.)  The proportioning of the blends tested 

in Matrices II and III was similar to the corresponding blends from Matrix I.  For mixes 

with less than 20% FAC, part (or all) of the friction aggregate was replaced with 

carbonate aggregate.  For mixes with more than 20% of FAC, part (or all) of the 
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carbonate aggregate was replaced with friction aggregate, while keeping the gradation 

essentially constant (see note below  Table 4). 

 

 Table 4. Fineness modulus and proportions (% by weight) of aggregate blends 

used in Matrix II 

NMAS 9.5 mm 19 mm 

Gradation Coarse Fine S-shaped Coarse Fine S-shaped 

Symbol 95_C 95_F 95_S 19_C 19_F 19_S 

FAT* 20 20 20 20 20 20 

CAT* 51 20 51 59 35 59 

NS 17 10 17 10 8 10 

MS 12 50 12 11 37 11 

FM 4.68 3.53 4.34 5.56 4.38 5.27 

*Note: actual proportions of FAT and CAT aggregates on a given sieve size varied slightly 

from the overall target value shown above due to the limited availability of certain fractions 

in the aggregates used (refer to page 56).
 

 

 

The final gradations of the six different blends used in the study were shown 

previously in Figure 6 for the 9.5 mm NMAS mixtures and in Figure 7 for 19 mm NMAS 

mixtures.  The gradations of individual fractions used to prepare those blends are shown 

in Figures 8 to 13.  
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Figure 8. Blend composition for mixes with 9.5 mm NMAS and coarse gradation 
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Figure 9. Blend composition for mixes with 9.5 mm NMAS and fine gradation 
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Figure 10. Blend composition for mixes with 9.5 mm NMAS and s-shaped gradation 
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Figure 11. Blend composition for mixes with 19 mm NMAS and coarse gradation 
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Figure 12. Blend composition for mixes with 19 mm NMAS and fine gradation 
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Figure 13. Blend composition for mixes with 19 mm NMAS and s-shaped gradation 
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The following constraints were taken into account when preparing the aggregate 

blend for a given test cell: 

 The final blend should not differ from the target gradation by more than ±2.5% 

(when checked on each sieve size), 

 The final blend’s FM should not differ from the target gradation FM by more 

than ±0.025, 

 For each of the target gradations (used to prepare six different mixes), the 

maximum difference in the amount of specific FAT fraction should not be 

higher than 5% (when checked on each sieve size), 

 For each of the target gradations (used to prepare six different mixes), the 

maximum difference in the amount of specific CAT fraction should not be 

higher than 5% (when checked on each sieve size).  

 

3.3.1.2 Binder Content Determination  

The main criterion in designing the mixes used in this study was the air void 

content in the compacted sample.  All other parameters (voids in the mineral aggregate 

(VMA), voids filled with asphalt (VFA) and dust-to-binder ratio (P0.075/Pbe)) were also 

determined but they were not included as mix design factors (refer to Appendix C, 

Table C 1 for detailed information).  Because of the need to tightly control the aggregate 

gradations and blends (above) it was not feasible to also control all the other, usual design 

parameters. 

The design binder content for each mix was that which provided 4% air voids 

(Va) in the mix compacted in the Superpave Gyratory Compactor (SGC).   Compaction 
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effort was determined based on the anticipated (over a 20-year period) traffic level of 3-

30 million ESAL (design Equivalent Standard Axle Loads).  Many two-lane, multilane 

divided, and partially or completely controlled access roadways have design traffic levels 

in this range.  These types of roadways may include medium to high traffic city streets, 

many state routes, U.S. highways, and some rural Interstates.  Following AASHTO M 

323 (2004) and AASHTO R 35 (2004), the number of SGC gyrations corresponding to 

the 3-30 million ESAL traffic level is 100 (Ndesign = 100).  The binder contents for 

specimens tested in Matrices I-III are shown in Tables 5 through 7, respectively. 

Table 5. Matrix I: binder content of mixes (%) 

NMAS 9.5 mm 19 mm 

Gradation Coarse Fine S-shaped Coarse Fine S-shaped 

FAT 
SS 5.7 5.4 7.0 4.5 4.2 5.4 

Q 5.9 4.9 7.0 4.9 4.0 5.3 

Note: each cell contains three different mixes, each with addition of different carbonate 

aggregate type (CAT): D, HL and SL.  FAC was equal to 20%. 

 

 

Table 6. Matrix II: binder content of mixes (%) 

FAC [%] 
FAT 

Q SS 

0 * * 

10 7.3 7.3 

20 7.0 7.0 

40 7.0 6.5 

70 6.8 6.1 

* Binder content 7.7%, FAC=0%. 
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Table 7. Matrix III: binder content of mixes (%) 

FAC [%] 
CAT 

D HL SL 

10 5.9 5.9 5.9 

20 5.7 5.7 5.7 

 

 

3.3.2. Field Study 

Existing pavement sections constructed from four types of mixes were tested in 

the field part of this study:  These existing PCC concrete, dense graded HMAs (both 

Superpave and Marshall designed mixes), PFC and SMA mixes were designed by 

contractors or the states in which they were located..  For detailed information refer to 

Appendix C, Table C 1.  All the HMAs (except PFC) were designed for the same air void 

content.  

Three field sections that are closed to public traffic were tested periodically in this 

study to investigate changes in friction and texture taking place in the pavement over the 

time without traffic.   Three other field sections tested were on public roads and therefore 

show changes in frictional properties over the time and traffic.  The three sections 

without traffic were located on the INDOT test track:  these were HMA, called HMA-TT 

(for test track); tined concrete (TC) and smooth concrete (SC).  The other three sections 

were located on an interstate highway and a U.S. road; these were conventional dense 

graded Superpave asphalt (DGA), SMA and PFC.   
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Aggregate blend gradations of the asphalt mixes tested periodically in this study 

are shown in Figure 14 and fineness modulus, material type, quantity and volumetric data 

are shown in Table 8.  The value of fineness modulus was the highest for the PFC (5.54), 

intermediate for the SMA (4.82) and the lowest for the HMA-TT and DGA (4.43 and 

4.28, respectively).  Steel slag aggregate was used in the DGA, SMA and PFC (though 

combined in different proportions with various other aggregates and additives), while 

blast furnace slag was used in the HMA-TT.  SBS-modified PG 76-22 binder, from two 

different sources, was used in all four mixes.  The binder content by weight appears to be 

fairly similar for all of the four mixes: 6.3% for HMA-TT, 5.5% for SMA and 5.7% for 

PFC and DGA.  However, the binder content by volume was much higher for the SMA 

and PFC due to the quantity of dense steel slag used in these mixes. 
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Figure 14. Gradation of HMA-TT, DGA, PFC and SMA sections tested periodically 
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The same concrete mixture was used during construction of both of the concrete 

test sections (TC and SC).  The only difference between those two sections was in the 

concrete finishing method.  Detailed information about the concrete mixture proportions 

is not available, however the concrete composition was typical for those used in 

pavement construction in Indiana: cement (260-285 kg/m
3
), class C fly ash (58-70 

kg/m
3
), water to cement ratio about 0.42, fine aggregate about 35-50% of total weight of 

aggregates, air entraining agent in the amount needed to obtain about 6.5% air and water 

reducing admixture. 

 

Table 8. Material type, quantity and volumetric data of asphalt sections tested 

periodically 

Section / Mixture DGA HMA-TT SMA PFC 

Natural Sand, %  10   

Manufactured Sand 

(Dolomite), % 
10 35 10 10 

Dolomite, % 40 28   

Blast Furnace Slag, %  27   

Steel Slag, % 50  80 90 

Mineral Filler, %   10  

Total, % 100 100 100 100 

FM 4.28 4.43 4.82 5.54 

Gsb 2.95 2.64 3.48 3.57 

Gmm 2.75 2.45 3.15 3.19 

Binder Type PG 76-22 PG 76-22 PG 76-22 PG 76-22 

Binder Content (%) 5.7 6.3 5.5 5.7 
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Material type, quantity and volumetric data of the field asphalt sections tested 

only once are shown in Tables 9 and 11 (for sections located in Indiana and in Iowa, 

respectively).  The binder content for those mixes varied from 4.3% to 6.8%.  Note that 

sections HM-IN-6, HM-IN-7 and HM-IN-8 were constructed from the same mixture. 

The fineness moduli and blend gradations of sections tested once are shown in 

Tables 10 and 12 (for sections located in Indiana and in Iowa, respectively).  Mixes with 

three different NMAS (9.5, 12.5 and 19 mm) were used.  The FM of mixes HM-IN varied 

between 4.19 and 4.58, while the FM of mixes HM-IA varied between 3.48 and 5.30. 
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Table 9. Material type, quantity and volumetric data for Indiana sections tested one time 

Section / Mixture 
HM-

IN-1 

HM-

IN-2 

HM-

IN-3 

HM-

IN-4 

HM-

IN-5 

HM-

IN-6 

HM-

IN-7 

HM-

IN-8 

Natural Sand, % 9 11 25   20 20 20 

Manufactured Sand 

(Limestone), % 
23 18       

Manufactured Sand 

(Dolomite), % 
   40 31 11 11 11 

Manufactured Sand 

(Gravel), % 
     12 12 12 

Limestone, % 53 46 34      

Dolomite, %    30 27    

Gravel, %   16      

Crushed Gravel, %      42 42 42 

Blast Furnace Slag, 

% 
   30 27    

RAP, % 15 25 25  15 15 15 15 

Total, % 100 100 100 100 100 100 100 100 

Gsb 2.70 2.70 2.66 2.57 2.58 2.68 2.68 2.68 

Gmm 2.53 2.52 2.49 2.45 2.49 2.49 2.49 2.49 

Binder Type 
PG 

70-22 

PG 

58-28 

PG 

58-28 

PG 

62-28 

PG 

62-28 
PG 

64-22 
PG 

64-22 
PG 

64-22 

Binder Content (%) 5.0 5.0 5.2 6.8 6.7 5.4 5.4 5.4 

 



 

 

62 

Table 10. Fineness modulus and aggregate gradation (percent passing per sieve size) for 

Indiana sections tested one time 

Section / 

Mixture 
HM-

IN-1 

HM-

IN-2 

HM-

IN-3 

HM-

IN-4 

HM-

IN-5 

HM-

IN-6 

HM-

IN-7 

HM-

IN-8 

NMAS, mm 9.5 9.5 9.5 9.5 12.5 9.5 9.5 9.5 

FM 4.30 4.31 4.19 4.51 4.58 4.30 4.30 4.30 
S

ie
v
e 

S
iz

e,
 m

m
 

25 100 100 100 100 100 100 100 100 

19 100 100 100 100 100 100 100 100 

12.5 100 100 100 100 100 100 100 100 

9.5 93 93 98 91 89 93 93 93 

4.75 60 59 73 50 50 62 62 62 

2.36 48 47 44 41 39 45 45 45 

1.16 31 31 30 29 27 32 32 32 

0.6 21 20 20 19 18 19 19 19 

0.3 12 12 10 12 11 12 12 12 

0.15 6.5 7.3 6.8 7.5 6.7 7.4 7.4 7.4 

0.075 4.5 5.2 4.9 5.0 4.1 5.5 5.5 5.5 
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Table 11. Material type, quantity and volumetric data for Iowa sections tested one time 

Section / Mixture 
HM-

IA-1 

HM-

IA-2 

HM-

IA-3 

HM-

IA-4 

HM-

IA-5 

HM-

IA-6 

HM-

IA-7 

HM-

IA-8 

HM-

IA-9 

HM-

IA-10 

HM-

IA-11 

Natural Sand, % 40 20 25 22  15 25 25 35 15 25 

Manufactured Sand 

(Limestone), % 
10 10 17      45  20 

Manufactured Sand 

(Quartzite), % 
      5 10    

Limestone, % 45 30 58 43 25 30    53 40 

Limestone Chips, % 5    45    20   

Quartzite, %          32 15 

Gravel, %     30 10 25 20    

Crushed Gravel, %  40    45 45 45    

RAP, %    35        

Total, % 100 100 100 100 100 100 100 100 100 100 100 

Gsb 2.62 * 2.61 * * * * * * * * 

Gmm 2.43 * 2.43 * * * * * * * * 

Binder Type 
PG 

64-22 

AC- 

10 

PG 

58-28 

AC- 

5 
* 

AC-  

10 

AC- 

10 

AC- 

10 

AC- 

10 

AC- 

20 

PG 

58-28 

Binder Content (%) 6.2 5.0 5.8 5.5 4.9 4.3 5.8 5.2 6.2 5.1 * 

* Data not available. 
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Table 12. Fineness modulus and aggregate gradation (percent passing per sieve size) for 

Iowa sections tested one time 

Section / Mixture 
HM-

IA-1 

HM-

IA-2 

HM-

IA-3 

HM-

IA-4 

HM-

IA-5 

HM-

IA-6 

HM-

IA-7 

HM-

IA-8 

HM-

IA-9 

HM-

IA-10 

HM-

IA-11 

NMAS, mm 12.5 19 12.5 12.5 19 19 19 19 9.5 19 12.5 

FM 4.16 4.76 4.36 3.88 4.62 4.91 4.31 4.49 3.48 5.30 4.24 

S
ie

v
e 

S
iz

e,
 m

m
 

25 100 100 100 100 100 100 100 100 100 100 100 

19 100 100 100 100 100 100 100 100 100 100 100 

12.5 97 88 95 95 88 84 89 86 100 88 91 

9.5 87 70 84 86 74 65 74 70 100 69 77 

4.75 65 51 63 69 55 45 61 56 83 39 65 

2.36 52 40 45 59 41 35 52 48 66 24 52 

1.16 39 29 33 43 31 26 38 37 48 16 37 

0.6 25 19 22 31 20 19 24 23 30 11 25 

0.3 11 9.1 11 16 10 12 13 11 16 6.7 13 

0.15 4.6 6.1 5.9 8.4 7 6.9 7.4 5.7 9.4 4.6 6.7 

0.075 3.7 4.4 4.3 7.0 5.1 4.2 4.8 3.8 6.5 3.6 4.1 

 

3.3. Equipment and Testing Procedures Used in the Friction Study 

This section summarizes the specimen preparation method, equipment and test 

procedures used during the friction study 

 

3.3.1. Laboratory Friction Study 

3.3.1.1. Specimen Preparation 

The experimental design for the friction study included collecting and processing 

relatively large amount of materials.  The HMA used in this study was prepared in about 

270 mix batches.  The amount of the HMA used for slab preparation was about 1600 kg 
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and for the mix design about 500 kg.  About 150 kg of binder was used in the laboratory 

part of the study.  All mixes were produced from laboratory batched aggregates; about 

1950 kg of aggregates was mixed in order to prepare the HMAs, however the amount of 

the aggregate collected and sieved was around 5,000 kg. 

During the process of laboratory mix preparation, all the aggregate was oven 

dried at 105°C and cooled to room temperature prior to being sieved and sorted into 

individual size fractions.  Then the aggregate was batched.  Prior to mixing, the batched 

aggregate blends and binder were heated to a mixing temperature of 150ºC.  The mixing 

was performed in a five-gallon “bucket type” laboratory mixer, which was first primed 

with a “butter” mixture in order to avoid binder loss during preparation of the test 

specimens.  Each slab required about 24 kg or 44 kg of mix, depending on the NMAS, 

which determined the slab thickness.  Due to this large sample size, several mix batches 

(of about 6 kg of mix) were required to produce each slab.  After mixing, the HMA 

samples from separate batches were combined and placed in an oven.  Next, the mix was 

conditioned for two hours at the compaction temperature (145°C) according to the 

AASHTO R 30 (2002) standard.  The mixes were cooled and stored in closed buckets 

until slab preparation time.   

In addition to the laboratory produced mixes, plant produced SMA and PFC 

mixes (collected during the construction of field sections) were also stored in closed 

buckets for about three years until slab preparation time.  It should be noted that due to 

the difference in the binder used in those two mixes (SBS modified PG 76-22 instead of 

unmodified PG 64-22 used in laboratory produced HMAs), a higher compaction 

temperature was selected (150°C). 
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At the time of slab fabrication, mixes were reheated to the compaction 

temperature and compacted into square wooden molds with dimensions (width and 

length) of 508 x 508 mm.  The 19 mm NMAS mixes were compacted into 64 mm thick 

molds, and the 9.5 mm NMAS mixes were compacted into 38 mm thick molds.  Plant 

produced mixes (SMA and PFC) were compacted into both types of molds (64 and 

38 mm).  For all mixtures (except the PFC) the amount of mix needed to be compacted 

was calculated based on the mold volume and HMA bulk specific gravity (Gmb) 

corresponding to 7% air voids (or corresponding to Va=22% for PFC). 

It is recognized that laboratory compaction methods produce specimens different 

than samples extracted from field pavement sections; moreover, various laboratory 

compaction methods (commonly used during the mix design process) produce specimens 

that could vary in properties (they mostly differ by air void content) [Abo-Qudais and 

Qudah 2007, Iwama et al. 2007].  A specially developed laboratory compaction 

procedure was adopted to prepare the specimens in this study.  To compact the mixes, a 

static “rolling pin” (with dimensions of 76 x 28 cm (length x diameter)) attached to a fork 

lift was used.  To prevent the HMA mixture from losing heat, the roller was first warmed 

using two infrared lamps to a temperature of 75°C (see Figure 15a).  The total load of the 

roller and frame of the forklift applied to the sample was approximately 4.4 kN.  

Compaction was accomplished in two perpendicular directions in three stages, as shown 

in Figure 15b to d.  First (pre-densification), mix was placed into the mold and tamped 

with a spatula to prevent loss of material during initial compaction.  Next (initial 

compaction stage), the mixture was tamped with the roller (without rolling) at ten 

different places to densify the structure.  In the third (final compaction) stage, the roller 
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was used to compact the mix after a flexible 3 mm thick aluminum plate was placed 

between the sample and roller to provide a larger contact area between the surface of the 

slab and the roller, thus ensuring more uniform load distribution.  (The bottom surface of 

the plate was sprayed with an anti-adhesive agent.)  Typical field roller diameters are 

much greater than the 28 cm roller used in this study; the thin plate deflected under the 

weight of the roller, simulating a larger diameter roller.  Rolling was continued (using 

two directional passes) until a smooth surface was obtained and no further densification 

was noticed.  The typical compaction process took about 10-12 minutes.  This process 

was developed though trial and error and was found to minimize loss of material and to 

yield an acceptable (smooth) surface profile.  The procedure was intended to simulate 

field compaction to the extent possible.  (The air void contents in the compacted slabs are 

discussed in sections 3.3.1.3 and 4.3.) 

Views of surface texture of the eight most characteristic (in terms of the texture) 

specimens compacted into the wooden molds are shown in Figures B 1 through B 8 in 

Appendix B; mixes with three different gradations (C, S and F) and two different NMAS 

(9.5 mm and 19 mm) are shown in those figures.  In addition, the plant produced SMA 

and PFC used in the laboratory are also illustrated there.  
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Figure 15. Stages of the friction slab compaction process: (a) preheating roller, (b) mix 

placing and pre-densification, (c) initial compaction and (d) final compaction 

 

3.3.1.2. Equipment and Testing 

Based on the literature review and a survey of users, as well as experience and 

limited data collected in an initial phase of this project, the DFT and CTM devices 

appeared to be the best available devices for measurement of friction and texture both in 

the laboratory and in the field.  Therefore, these devices were selected for use in this 

project.  In addition to these measurement devices, a specially-developed polishing 

(a) (b) 

(c) (d) 
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machine was used in this study.  All three devices shown in Figure 16, were designed to 

operate over the same circular footprint with a diameter of 284 mm.   

 

Figure 16. Polishing, friction and texture equipment: (a) CTPM, (b) DFT and (c) CTM 

  

During the Dynamic Friction Tester (DFT) device operation, ASTM E 1911 

(2002) and an operation manual [Florida DOT 2006] were followed.  The DFT is a 

portable device consisting of a horizontal spinning disk fitted with three spring-loaded 

rubber sliders.  The rubber sliders are located at a distance of 142 mm from the disk 

(a) 

(c) (b) 
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center, resulting in a measured surface diameter of 284 mm (refer to Figure 17a).  The 

standard sliders are made of the same type of rubber used in friction test tires, though 

other materials are available for other applications.  During a typical test with the DFT, 

the horizontal spinning disk is accelerated to a linear speed of 60 km/h.  In addition, 

during the disk acceleration process, a film of water is sprayed on the measured surface.  

Once the designated speed is reached, the disk drops down and the rubber sliders come in 

contact with the surface.  Due to the frictional forces generated between the sliders and 

surface, the disk rotational speed decreases.  The torque generated by the sliders is then 

used to develop the friction / speed relationship.   The coefficient of friction is calculated 

by converting the torque into the horizontal force on the sliders and dividing by the 

applied vertical load.  Test data are collected on an attached personal computer and the 

wet friction number measured at a linear speed of 20 km/h (DF20) is reported.  The DFT 

measurements are affected by both the microtexture and macrotexture of the surface.   

During the operation of the Circular Track Meter (CTM) device, ASTM E 2157 

(2005) was followed.  The CTM is a portable device allowing for macrotexture 

measurements.  In the CTM device, a charged couple device (CCD) laser displacement 

sensor mounted on a rotating arm (as shown in Figure 17b) rotates around a central point 

at a fixed distance above the pavement and measures the change in elevation of points on 

the surface.  The dimension of the motor driven arm allows the sensor to follow the same 

path as the DFT sliders.  During a typical measurement, the CCD sensor rotates at a 

speed of 7.5 RPM and collects texture information.  During the measurement, data are 

collected by a personal computer attached to the tester and the mean profile depth (MPD) 

is determined.  In addition, the collected data can be separated into eight arcs.  Then, if 
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desired, macrotexture can be analyzed in the two arcs parallel to traffic, and two arcs 

perpendicular to traffic, to investigate directional effects of the texture [Nippo, web page 

2006].   

 

Figure 17. Bottom view of the friction and texture devices: (a) DFT and (b) CTM 

 

The Circular Track Polishing Machine (CTPM) used in this study (shown in 

Figures 16a and  

18) simulates the polishing effect of traffic and was fabricated by the Purdue 

Machine Shop.  The main design concept was adopted from the NCAT polishing 

machine [Vollor and Hanson 2006], and the CTPM device is similar (in some aspects) to 

the NCSU Wear and Polishing Machine (ASTM E 660 (2002)).  The main differences 

between the NCAT polisher and the CTPM device are in the form of additional features 

installed on the latter.  Those included: 

 mechanical devices to precisely align the sample in the testing spot (refer to 

Figure 18a),  

(a) (b) 
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 electronically controlled actuators to allow easy, precise  and consistent sample 

placement in the same testing spot (refer to Figure 18b),  

 mechanical device to level the CTPM (refer to Figures 18a and b) and 

 mechanical devices to control the total force applied to the sample even when 

samples with various thicknesses are tested (refer to Figure 18c).  

The CTPM polishes the surface with three patterned pneumatic tires with a 

standard tire size designation of 2.80/2.50 and pressure maintained at 240 kPa.  Water is 

used to wash off abraded rubber particles from the surface during polishing as well as to 

cool the rubber and to simulate wet surface conditions (refer to Figure 18d).  During 

polishing, a total load of 0.65 kN is applied through the tires to the surface.   

The drive mechanism for the vertical central shaft is an electric motor geared to 

rotate the shaft and wheels assembly at a speed of 47 rotations per minute (RPM) 

resulting in a linear tire speed of 0.7 m/s. 
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Figure 18. Details of the CTPM device: (a) alignment and level device, (b) level device 

and actuator, (c) force control bolt and (d) rubbers washed with water 

 

During testing the polisher was stopped periodically so the measurement of 

friction and texture could be performed.  It was stopped after the following cumulative 

number of thousands of wheel passes: 1.5, 3.6, 9, 18, 30, 45, 75, 120, 165.  Previous work 

at NCAT [Vollor and Hanson 2006] suggested that the friction would have reached the 

terminal level after about 120,000 wheel passes, so continuing to 165,000 passes was 

(a) 

(d) 

(c) 

(b) 
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assumed to be sufficient; this was later verified.  When the specified number of wheel 

passes had been applied, the specimen was removed from the polisher and allowed to dry 

overnight as water in the pores could affect the texture readings.  Following drying, the 

specimen was tested for texture and friction according to ASTM E 1911 (2002) and 

ASTM E 2157 (2005), respectively.  Each of these tests was conducted twice without 

moving the device.  After testing, the specimen was placed back in the polisher.  

Alignment devices in the polisher ensured that the specimen was properly positioned so 

that the polishing was performed in the same path.  Note: each specimen was also tested 

for texture and friction prior to polishing (at zero wheel passes).   

Based on the average values of texture (MPD) and friction (DF20), the IFI (F60 

and Sp) was calculated, following the ASTM E 1960 (2007) specification.   

The total cumulative time to polish a given specimen was about 19.5 h.  During 

polishing, the three wheels of CTPM traveled about 147 km (total combined distance).   

It should be noted that all laboratory tests were conducted at an ambient 

temperature of 20±2°C. 

 

3.3.1.3. Sample Volumetric Measurement 

As mentioned previously, the desirable air void content of the laboratory 

compacted slabs was 7% (and 22% for PFC).  However, due to the compaction technique 

adopted in this project, this target could not be reached without crushing the aggregate.  

Loss of heat and friction between the mix and mold likely played a role.  The air void 

content was not uniform either, i.e., the minimum air void content was in the center of the 

slab and increased radially with distance from the center of the specimen (refer to 
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Figure 19).  Based on  preliminary tests and trial compactions (for the typical Superpave 

mixture), the air content in the center of the slab was determined to be about 9.7% and 

about 12.3% in the corners of the slab.  In the area where polishing and testing was 

performed, the air void content was about 10.4%, which is not considered unreasonable 

for the purposes of this study.  In addition, the air void content likely varied from top to 

bottom of the slab, though this was not quantified in this study.  The surface texture of 

the slabs appeared to be “tighter” than deeper in the slab, which is likely due to friction 

against the plywood bottom of the mold.  Macrotexture measurements of the surfaces 

were compared to field measured macrotexture values to determine if the texture was 

reasonably representative of field conditions; see section 4.3.  It also should be noted that, 

based on the trial tests, no densification caused by the polisher action was observed.  In 

addition, polishing did not cause rutting in the tested samples. 
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.  

Figure 19. Air void content distribution  

 

At the end of the laboratory part of this study, two cores were drilled from each 

slab.  Cores with a diameter of 152 mm were extracted from two locations in such a way 

that in both cases the center of the core was positioned in the track over which the 

polisher, CTM and DFT devices operated.  As shown in Figure 20, one core was 

extracted from a location on the diagonal of the slab (referred to as the “corner” core) 

while the other was extracted from a place located between the center of the slab and the 

middle of its side (referred to as the “side” core).  Using those two cores, air void 

contents were determined for all tested specimens. 
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Figure 20. Location of the cores extracted from the specimen  

 

A relatively large diameter of the core (152 mm) was selected to allow specimens 

for water permeability testing; however, this testing was later deemed to be unnecessary 

and was not conducted.  Due to the sample internal structure (presence of open or 

interconnecting voids) and high probability of greater than 2.0% water absorption (by 

volume), AASHTO T 166 (2007), using saturated- surface dry specimens, was not 

applicable.  ASTM D 6752 (2004), Standard Test Method for Bulk Specific Gravity and 

Density of Compacted Bituminous Mixtures Using Automatic Vacuum Sealing Method, 

was used instead, and the bulk specific gravity (Gmb) was measured using the CoreLok 

apparatus.  Based on this Gmb and the previously measured Gmm, the air void content was 

calculated for each specimen.   
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3.3.2. Field Friction Study 

During field testing, the towed friction trailer, CTM/DFT and British (Pendulum) 

Skid Resistance Tester (BSRT) devices were used to test the same part of the pavement 

section.  The CTM and DFT devices were positioned in the wheelpath where the towed 

friction trailer runs.  When used, the BSRT was also placed in the same spot as the DFT 

and CTM. 

 

3.3.2.1. Field Section Construction 

Both the HMA and PCC field sections were constructed under the supervision of 

the Indiana or Iowa DOTs (depending on the location of the test section).  Asphalt 

mixture compaction temperature, roller compactor type and number of roller passes were 

the same as those typically used in the states of Indiana and Iowa, respectively; however 

specific data are not available.  In this study 22 existing sections located on public roads 

(interstate highways, state and U.S. roads as well as county roads) and three test sections 

(HMA-TT, TC and SC) located on the INDOT test track, which is closed to public traffic, 

were investigated. 

All three sections located on the INDOT test track were long enough to allow the 

locked wheel friction trailer to test the surface for 1.0 second at the anticipated speed.  

Each section was about 40 meters long.  INDOT’s test track consists of three different 

zones: the approach zone, the test zone and the exit zone.  The approach and exit zones 

allow the operator to adjust and maintain test speed [Li et al. 2006].  This track was 
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specifically designed and used to verify the calibration and operation of INDOT’s friction 

trailer. 

Both concrete test sections (TC and SC) were constructed from the same mixture, 

however, they were finished in different ways.  The surface of the tined concrete (TC) 

section was finished with transverse grooves spaced 18-20 mm apart; the grooves were 

around 3 mm wide and 3 mm deep.  The smooth concrete section (SC, also called “slick” 

concrete) was finished to obtain a fine surface texture.  

The PFC and SMA mixes were placed on an interstate highway as part of another 

study using a material transfer device (MTD) to improve ride quality and to reduce mix 

segregation.  The MTD transferred mix from the trucks into the hopper of a conventional 

paver.  Compaction was accomplished with two steel wheeled rollers.  Only one pass 

with each roller was needed to seat the PFC and SMA, since relatively little compaction 

effort is needed to bring the coarse aggregates into contact and because over-rolling can 

lead to aggregate breakdown.  Due to the gap-graded nature of those mixes, there is 

extensive stone to stone contact between the coarse aggregate particles with very little 

mastic or fine material to “cushion” the coarse aggregates [McDaniel et al. 2004, 

McDaniel and Thornton 2005].  Other sections were placed using typical construction 

equipment and operations. 

Before opening to traffic, the air void content was determined for the PFC and 

SMA sections (following ASTM D 3203 (2005)) to be 22.5% for the PFC and 7-8% for 

the SMA.  The air content in six cores extracted from the PFC section varied from 22.0% 

to 24.9%.  No information is available about the air void content in other field test 
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sections, however the quality of all sections was approved by either the Indiana or Iowa 

DOT’s. 

Views of the surface texture of the pavement sections tested periodically in this 

study are provided in Figures B 9 through B 11 in Appendix B. 

 

3.3.2.2. Equipment 

Various types of testing equipment were used in the field part of the study; the 

previously described portable DFT and CTM devices and ASTM E 274 (2006) locked 

wheel friction trailers were used throughout.  In addition, for a limited number of tests, a 

British (Pendulum) Skid Resistance Tester (BSRT) was also used. 

During a typical measurement, the friction trailer (shown in Figure 21) is towed at 

a constant speed over the tested pavement. When the test is initiated, water is sprayed 

ahead of the tire so the wet pavement friction can be determined (refer to Figure 22).  The 

wheel is fully locked, and the resulting torque is recorded.  Based on the measured torque 

(converted to the horizontal force) and dynamic vertical load on the test wheel, the wet 

coefficient of friction between the test tire and pavement surface can be calculated.  The 

skid number (SN) is then reported as the coefficient of friction multiplied by 100.  It 

should be noted that the same speed should be maintained before the test and when the 

wheel is locked.  
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Figure 21. ASTM E-274 towed friction trailer: (a) oblique and (b) side views 

    
 

Figure 22. ASTM E-274 towed friction trailer, water nozzle system: (a) general view and 

(b) water nozzle detail 
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As shown in Figure 23, the friction trailer used in Indiana is typically equipped 

with two types of tires: ASTM E 501 (2006) rib tire (on the right side) and ASTM E 524 

(2006) smooth tire (on the left side). 

Following the recommendations of the ASTM E274 (2006) specification, the test 

speed (48, 64 or 85 km/h) and type of tire (rib (R) and smooth (S)) are stated when the 

obtained skid number (SN) is reported.  The typical reporting format is as follows: 

SN(speed in SI units)tire type.  As an example, SN(48)S indicates that the test was 

performed at a speed of 48 km/h with the smooth type of tire. (When the speed is 

reported in miles per hour, the parentheses around the speed are not used, thus SN30S 

signifies the test was conducted with the smooth tire at 30 mph.)  During tests, five 

measurements (as required by the ASTM E274 (2006) specification) were conducted. 
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Figure 23. Tires used for the friction measurements: (a) smooth and (b) rib 

 

For a limited number of tests, the BSRT device was also used.  The BSRT 

consists of a pendulum and rubber slider.  During the test, the slider (located at the end of 

the pendulum) is positioned to be in contact with the measured surface for a specific 

distance (from 124 mm to 127 mm).  Then the pendulum is raised to the locked position, 

the surface is wetted, and the pendulum is released.  Due to the frictional forces generated 
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between the slider and tested pavement, the pendulum decelerates when propelled over 

the pavement.  The relative amount of energy lost during the deceleration is indicated by 

the drag pointer attached to the pendulum; the scale for the pointer is calibrated to read 

the British Pendulum Number (BPN). 

Note that tests with the BSRT, DFT and CTM devices require traffic control 

arrangements and lane closure.  Due to this reason, only the driving (right) lane was 

investigated during this study.  Corresponding tests with the friction trailer were also 

conducted only on the driving lane. 

 

3.3.2.3. Testing Schedule, Weather and Traffic Conditions 

A wide range of pavements was tested in this study.  All test sections are located 

in the central region of Indiana and in eastern Iowa.  The pavement ages were between 

two and 25 years, and pavements were tested for up to four years, though most were 

tested only once.  The testing was conducted between early March and the middle of 

November, when temperatures were significantly above the freezing temperature of water 

(above 5°C).  

For the pavements monitored periodically, an attempt was made to capture a wide 

range of weather conditions and to conduct tests during different seasons.  Pavements 

were tested at air temperatures between 5°C and 34°C (pavement surface temperatures 

between 5°C and 50°C) and on both cloudy and sunny days.  The relative humidity 

during testing also varied from 40% up to 80%. 

The test track sections are unique and were included in this study because they are 

not exposed to traffic; the only vehicles allowed to drive on the track are the pick-ups 
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towing the friction trailers.  The test track was also designed to provide three ranges of 

friction numbers on the asphalt, tined concrete and smooth concrete sections.  Using this 

trailer, weekly (using only the left, smooth tire) and monthly calibration tests (using both 

tires: left - smooth and right – rib) were conducted a multiple number of times (from 

early March until late October).  Five measurements (per tire) were performed per each 

section at each calibration.  Due to the length of the approach and exit sections and due to 

safety restrictions, tests were only conducted at 48 km/h.  Information about the date of 

construction, traffic and test schedule for three test sections located on the INDOT test 

track (HMA-TT, SC and TC) is shown in Table 13, along with information on the other 

field sections. 

During all tests conducted with the CTM/DFT devices on the test track, the 

machines were positioned in the left tire path.  In addition, during tests conducted in 

2005, 2006 and two times in 2007, pavement in the right (rib) tire path was also tested 

(compare with Table 13).  Three spots were tested per each section.  One DFT and two 

CTM readings were performed in each spot (the DFT machine was positioned in the 

same location as the CTM) following ASTM E 2157 (2005) and ASTM E 1911 (2002), 

respectively.   

The BSRT device was used only once on the test track (during tests on 

9/14/2007).  The BSRT device was positioned in the same spots as CTM/DFT devices 

had been previously placed and four measurements were performed (following ASTM E 

303 (2003)).  Measurements were conducted in three directions: longitudinal, transverse 

and diagonal to the direction of traffic. 
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The test schedule for the DGA, SMA and PFC sections tested with the friction 

trailer and DFT/CTM devices is also shown in Table 13.  During tests with the 

CTM/DFT devices, machines were positioned in the left (L) and right (R) wheelpaths of 

the driving (right) lane and in the center of the lane (C), as shown in Figure 24.  Three 

sets of tests (L, C and R) were conducted, resulting in observations at nine locations.  The 

DFT and CTM tests followed the method previously described for the INDOT test track.  

Using both smooth and rib tires, towed friction trailer tests were conducted at a speed of 

64 km/h.   

The BSRT device was used only once on the DGA, DMA and PFC sections when 

they were tested in July 2007 (on 7/10/2007 for the DGA and on 7/25/07 for the SMA 

and PFC).  The BSRT device was positioned in the exactly same locations where the 

CTM/DFT devices were previously placed and tests followed the previously described 

methods.  Again, measurements were conducted in three directions: longitudinal, 

transverse and diagonal to the direction of traffic. 
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Table 13. Information about the traffic, construction year and testing time of pavement 

sections tested periodically with CTM/DFT 

Section / Mixture DGA 
PFC  

SMA 
HMA-TT 

TC  

SC 

Road Category
a
 US I INDOT Test Track 

AADT (x 10
3
)  

% Trucks 

31.5  

5% 

37.3 

26% 
Closed to Traffic 

NVA/month (x 10
3
)  451 980 Closed to Traffic 

Open to Traffic, 

Year 
2003 2003 2002 

Before 

1997 

Date of DFT/CTM 

Test  

 

9/6/2003 

5/5/2006 

10/30/2006 

4/10/2007 

7/10/2007 

9/25/2007 

 

9/10/2003 b 

8/1/2005 

11/16/2005 

10/3/2006 

4/10/2007 

7/25/2007 

9/25/2007 

8/31/2005
c
 

10/5/2005
c
 

11/10/2005
c
 

5/4/2006
 c
 

3/30/2007
 c
 

6/1/2007 

6/15/2007 

6/29/2007 

7/6/2007
 c
 

7/13/2007 

8/10/2007 

9/14/2007 

9/21/07 

Date of Friction 

Trailer Test  

(Month, Year) 

8/2004 

9/2007 

9/2004 

9/2005 

9/2006 

9/2007 

* 

a
 Road category: US – U.S. highway, I – interstate highway. 

b
 Before opening to traffic. 

c
 Dates when pavement in rib tire path was also tested 

*
 During the test season (from early March until late October), tests were conducted 

weekly (smooth tire) and monthly (rib tire), if the weather permitted. 
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Figure 24. Location of the CTM/DFT devices during the highway tests  

 

Information about the traffic on the Indiana sections tested one time (HM-IN-1 to 

HM-IN-8) is shown in Table 14.  Based on the AADT traffic information, the number of 

vehicle axles passes (NVA) on the test section (per month) was calculated.  During the 

calculation, several simplifications were applied.  It was assumed that an equal number of 

vehicles travelled in both directions (AADT was divided by two) and that 55% of the 

vehicles were using the driving lane on interstate highways (I) and U.S. highways. In the 

case of state roads (SR), there was only one lane in each direction, so the 55% “lane 

dividing” factor was not used.  It was assumed that the average truck has 4.5 axles and 

the average car has 2 axles.  No information about the number of trucks within the total 

traffic was available; it was assumed that 15% of vehicles were trucks.  Results were 

multiplied by 30, which is the number of days per month.  No traffic growth adjustment 
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factors were employed.  This simplified equation for NVA for interstate and state 

highways had the following form: 

NVA = (AADT) · 0.5 · 0.55 · [%Trucks · 4.5 + (100% - %Trucks) · 2] · 30   (14) 

The test schedule for sections HM-IN-1 to HM-IN-8 is also shown in Table 14.  

During testing with the CTM/DFT devices, machines were positioned as shown in Figure 

24 and described previously.  The only difference was that five (instead of three) sets of 

locations (L, C and R) were tested (i.e., 15 locations were tested per section).  Friction 

tests were conducted at a speed of 64 km/h using both smooth and rib tires. 

Table 14. Information traffic, construction year and testing time of Indiana sections tested 

one time  

Section / 

Mixture 
HM-

IN-1 

HM-

IN-2 

HM-

IN-3 

HM-

IN-4 

HM-

IN-5 

HM-

IN-6 

HM-

IN-7 

HM-

IN-8 

Road Category
a
 SR US SR I I SR SR US 

AADT (x 10
3
) 

% Trucks  

Year 

5.8  
* 

2002 

3.0 
* 

2002 

1.9 
* 

2002 

41.7 
* 

2002 

41.7  
* 

2002 

1.4 
* 

2002 

1.0 
* 

2001 

3.5 
* 

2001 

NVA/month 

(x 10
3
) 

206 59 68 817 817 50 36 69 

Open to Traffic 

Year 
2005 2006 2006 1997 1997 2006 2006 2006 

D
at

e 
o
f 

T
es

t 

(M
o

n
th

, 
Y

ea
r)

 

CTM/ 

DFT 
Late August and Early September, 2007 

Friction 

Trailer 
Late August and Early September, 2007 

a
 Road category: US – U.S. highway, I – interstate highway, SR – state road. 

* Data not available. 
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Information about the traffic on the Iowa sections tested one time (HM-IA-1 to 

HM-IA-11) is shown in Table 15.  The NVA was calculated utilizing a similar procedure 

as previously described for the Indiana sections (HM-IN-1 to HM-IN-8).  For sections in 

Iowa, information about the number of trucks in the total traffic was available, thus the 

estimate could be more accurate.  

The test schedule for sections HM-IA-1 to HM-IA-11 is shown in Table 15.  In 

addition to tests conducted during this study, historical friction data (measured using a 

friction trailer) also exists; tests were conducted during late summer/early fall months 

during the test years shown in Table 15.  During testing with the CTM/DFT devices, the 

machines were positioned as shown in Figure 24 and described previously.  The only 

difference was that, in the interests of time, only two sets of locations (L, C and R) were 

tested (i.e., a total of six locations were tested per section).  All the Iowa DFT/CTM tests 

were conducted on two consecutive days.  This was under windy and chilly weather 

conditions; air and surface temperatures were about 5-10°C.  Tests with the friction trailer 

were conducted at a speed of 64 km/h using a rib tire only. 
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Table 15. Information about the traffic, construction year and testing time of Iowa 

sections tested one time  

Section / 

Mixture 
HM-

IA-1 

HM-

IA-2 

HM-

IA-3 

HM-

IA-4 

HM-

IA-5 

HM-

IA-6 

HM-

IA-7 

HM-

IA-8 

HM-

IA-9 

HM-

IA-10 

HM-

IA-11 

Road Category a US US US US I US US US US I US 

AADT (x 10
3
) 

% Trucks  

Year 

7.3 

14% 

2005 

18.7 
5% 

2005 

3.5 

15% 

2005 

5.9 

11% 

2005 

5.5 

11% 

2005 

3.2 

23% 

2005 

7.3 

11% 

2005 

7.3 

11% 

2005 

2.8 

17% 

2005 

17.0 

26% 

2005 

7.3 

18% 

2005 

NVA/month  

(x 10
3
) 

257 596 126 201 188 125 249 249 102 676 268 

Open to Traffic 

(Year) 
2001 1991 1997 1984 1991 1991 1992 1995 1982 1989 1996 

D
at

e 
o
f 

T
es

t 
(M

o
n
th

, 
Y

ea
r)

 

CTM/ 

DFT 
Middle September, 2006 

Friction 

Trailer 

Middle September, 2007 

2002 

2004 

1998 

1996 

2001 

2000 

1998 

2005 

2002 

2001 

2000 

1999 

1998 

1997 

1996 

1995 

1993 

2000 

1996 

 

2004 

2000 

1998 

1996 

1994 

1992 

1985 

1983 

 

2002 

1995 

2004 

2000 

1998 

1996 

1994 

1985 

1983 

 

2004 

2002 

2000 

1998 

1996 

1994 

2005 

a
 Road category: US – U.S. highway, I – interstate highway. 
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CHAPTER FOUR: EXPERIMENTAL RESULTS AND DISCUSSIONS 

 

 

 

This chapter contains the results of the laboratory and field part of this study.  

Discussion of the various factors influencing polishing resistance of the HMA is also 

shown here.  Note that all laboratory friction tests were conducted by the same operator 

under stable laboratory conditions.  On the other hand, the field tests were conducted at 

different temperatures and by a multiple operators. 

 

4.1. Laboratory Study 

This section presents some general observations about the measured laboratory 

parameters; specific details about the different aggregate and mixture variables studied 

are presented later in the report (4.1.3.1 and following) and are presented in the appendix.  

Typical friction (F60 and DF20) and texture (MPD) values obtained from two repeated 

measurements on same slab without moving the device are shown in Figure 25 (using the 

19 mm NMAS, s-shaped mixture with 20% steel slag and soft limestone as an example).  

In most cases, the replicate mean profile depth (MPD) values were similar (at a specific 

number of wheel passes).   
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Figure 25. Mean profile depth (MPD) and dynamic friction (DF20) data (a) and calibrated 

wet friction (F60) data (b) as a function of no. of wheel passes for one of the laboratory 

tested specimens (two repeated measurements) 

 

The values of dynamic friction (DF20) (from duplicate measurements) were also 

close to each other, at specific numbers of wheel passes.  The first two DF20 values 

(measured for the unpolished samples) were significantly lower than those measured after 

1,500 wheel passes, where the friction peaked.  This initial increase in friction is the 

result of the process of abrading the binder from the surface of the aggregate, which 
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exposed its microtexture (as is typically observed in the field).  After achieving this peak 

value, the DF20 plot decreased gradually and leveled off at about 120,000 wheel passes. 

As implied by equations 9 and 10 (and discussed in section 2.3.3), the changes in 

MPD had less of an impact on F60 than on the DF20 values; for the convenience of the 

reader those equations are repeated below.  Thus, as expected, the distribution of the 

calculated F60 is similar to that observed for DF20.  

SpeDFF

40

20732.0081.060          (repeated eq. 9) 

 

   MPDS p 7.892.14             (repeated eq. 10) 

The trends in the MPD, DF20 and F60 changes observed for other specimens are 

similar to those shown in Figure 25 with some differences in the individual values related 

to gradation and aggregate type (at a given number of wheel passes) and slopes.  A 

summary of the average values of the MPD, DF20 and F60 results for all 46 specimens 

tested (test matrices I to III) is shown in Table 16.  Due to the objectives of this study, the 

main effort was directed towards comparing the frictional properties of various 

Superpave mixtures.  In addition,  PFC and SMA specimens were also tested; these 

results are presented separately in section 4.1.3.4.  A complete set of laboratory polishing 

data (including CTM and DFT tests results) is shown in Appendix D (in Table D 1), 

while the data summary is shown in Appendix E, in Table E 1.   
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Table 16. Summary of the test results: laboratory friction measurements (test Matrices I-

III) 

 MPD, mm DF20 F60 

Minimum Value 0.31 0.28 0.21 

Maximum Value 2.42 0.85 0.57 

Average Value 1.08 0.54 0.35 

Minimum Range
a
 0.11 0.21 0.05 

Maximum Range
a
 1.24 0.50 0.25 

Average Range
a
 0.30 0.34 0.15 

a 
range within the sample 

 

4.1.1. Proposed Polishing Model 

Previously discussed similarities in the calibrated wet friction (F60) data 

distribution (in 4.1 and illustrated in Figure 25b) suggest that a general model 

incorporating all the test results could be developed.  Such a model would be useful to 

compare and to evaluate specimen frictional properties. 

The frictional resistance evaluation (polishing) model proposed here is somewhat 

similar to so called “skid performance rating (SPR)” procedure originally proposed by 

Prasanna et al. [1999].  In the SPR evaluation procedure, the relationship between friction 

performance and cumulative vehicle passes was plotted for various pavements.  The 

authors concluded that most of the plots were parallel to each other.  Based on this 

finding, different zones corresponding to the pavement frictional properties were 

arbitrarily selected for rating using the SPR; each of these zones matched the pavement 

section with specific polishing performance (graded from excellent to poor). 
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In an attempt to apply the SPR procedure approach to the analysis of polishing 

data from this study, the F60 results from Figure 25b have been re-plotted in Figure 26, 

but this time using a logarithmic scale to represent the number of wheel passes 

(horizontal axis).  This data presentation allows for “magnification” of the initial portion 

of the curve (up to 3,000 passes), thus making the analysis process easier.  As shown in 

Figure 26, the F60 data can be assigned to three different zones: initial pavement life 

(zone I), decreasing friction (zone II) and friction stabilization (zone III).    

 

 

0.2

0.3

0.4

0.5

0.6

1 10 100 1000 10000 100000 1000000
no. wheels passes

F
6
0

I II III

 

0.2

0.3

0.4

0.5

0.6

1 10 100 1000 10000 100000 1000000
no. wheels passes

F
6
0

I II III

 

0.2

0.3

0.4

0.5

0.6

1 10 100 1000 10000 100000 1000000
no. wheels passes

F
6
0

I II III

 

Figure 26. Plot of the typical calibrated wet friction relationship with no. of wheel passes 

for the 19SS20S_SL laboratory tested specimen 

Following these findings, a polishing model containing all three of the above is 

proposed as shown in Figure 27.  
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Figure 27. Proposed polishing model 

 

The proposed model includes three functions: polynomial (y1), logarithmic (y2) 

and linear (y3), corresponding, respectively, to zones I, II and III of the model.  These 

functions can be expressed as follows (equations 15-17):   

3

3

2

2101 )( xaxaxaaxy     (15) 

00 xx  

5042 )1ln()( axxaxy      (16) 

10 xxx          

50143 )1ln()( axxaxy     (17) 

1xx        

The proposed model, therefore, contains eight parameters: x0, x1, a0 – a5.  

However, since functions y1 and y2 are equal at xo, the number of unknown parameters 

can be reduced.  Substituting x=x0 in equations 18 and 19 yields:  

3

03

2

020101 0
xaxaxaay xx    (18) 

52 0
ay xx       (19) 

And since y1 and y2 are equal at x=x0, then  

3

03

2

020105 xaxaxaaa     (20) 
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In addition, since the continuity of the slopes at x0 is also required, at x=x0 the 

first derivatives of functions y1 and y2 also have to be equal.  As a result, the number of 

unknown parameters can be further reduced as follows: 

2

03021
1 32

0
xaxaa

dx

dy
xx

   (21) 

0

42

0 x

a

dx

dy
xx                 (22) 

And since dy1 and dy2 are equal at x=x0, then  

3

03

2

02014 32 xaxaxaa               (23) 

By combining equations 22 and 23, the number of parameters required for the 

model is thus reduced to six (x0, x1, a0 – a3).   

Ideally, the transition curve should follow the dotted (smooth change) curve 

shown in Figure 27.  In the simplified model, this smooth curve was replaced by a 

constant linear function (y3) intercepting the logarithmic function (y2) at x1.  Such a 

simplification helps to further reduce the number of parameters in the model without 

producing significant error.  Substituting a4 and a5 in equations 16 and 17 yields: 

)1ln()32()( 0

3

03

2

02012 xxxaxaxaxy  (24) 

)(
3

03

2

02010 xaxaxaa  

10 xxx       

)1ln()32()( 01

3

03

2

02013 xxxaxaxaxy  (25) 

)(
3

03

2

02010 xaxaxaa  

1xx        

The model parameters are found by minimizing the sum of square errors (SSE) as 

shown in equation 26.  This operation was performed assuming that the minimum SSE 

would result in the model that best fits the measured data: 

2
datalmodeSSE     (26) 
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From the engineering (practical) point of view, the polishing rate (corresponding 

to the a4 parameter) is one of the most important factors for the evaluation of pavement 

frictional properties.  The higher (less negative) the a4 value, the more resistant the 

specimen is to polishing.  The other important parameter of the model is the y3(x) value, 

equivalent to the terminal friction value F60 (at number of polisher wheel passes greater 

than or equal to x1).  A high F60 value corresponds to high pavement terminal friction.  

 

4.1.2. Application and Evaluation of the Proposed Polishing Model  

Models generated for the specimens tested in all three matrices yielded a 

relatively high coefficient of determination (R
2
) values with an average of 0.92 (refer to 

Table E 2 in Appendix E for detailed information).  Of the 46 specimens tested, one mix 

had an R
2
 value equal to 0.50, three mixes had R

2
 values of about 0.75, seven mixes had 

R
2
 values of about 0.8 and all the others were greater than 0.9.  Note that due to the focus 

of this study on Superpave mixes, the results of polishing of PFC and SMA mixes are 

summarized separately (see section 4.1.3.4). 

The proposed model was used to determine the number of wheel passes 

corresponding to the final (x1) polishing level for each of the test specimens.  A summary 

of the resulting x1 values is shown in Table 17.  The complete summary of all model 

parameters for each sample is shown in Appendix E, in Table E 2. 
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Table 17. Summary of x1 values (no. of wheel passes  corresponding to the 

terminal friction level) 

Matrix I II III 

Min x1 Value 109,000 96,000 125,000 

Max x1 Value 200,000 166,000 165,000 

Average x1 Value 162,000 147,000 141,000 

The x1 values were determined to be between 96,000 and 200,000 wheel passes.  

The average value (from 46 specimens tested in Matrices I to III) of 157,000 indicates 

that preliminary selection of the maximum number of wheel passes (165,000) applied to 

each specimen during polishing was a reasonable choice. 

To illustrate the goodness of fit of the proposed polishing model, the model was 

fitted to the actual test data for an example specimen (19SS20S_SL).  The results shown 

in Figure 28 indicate that for this particular test specimen there was good agreement 

between the actual and predicted F60 values.  
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Figure 28. Polishing model fitted to the laboratory data for 19SS20S_SL specimen  
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In subsequent sections, the influences of aggregate types, sizes and blend 

gradations on the frictional properties are discussed.  The frictional properties of 46 

laboratory produced and two plant produced mixes are investigated. 

Two parameters of the model, the polishing rate (a4) and the terminal friction 

value F60 (at number of polisher wheel passes equal to x1, F60@x1), were selected to 

compare the influence of the mixture composition on the frictional properties.  A 

statistical correlation analysis was performed to check whether or not these two 

parameters are correlated. 

A correlation analysis was conducted using the SAS 9.1 statistical package 

software.  Two parameters characterize the degree of correlation: coefficient of 

correlation (R-value) and significance of correlation (p-value).  The former describes the 

degree of linear relationship among variables and the latter is determined from hypothesis 

testing.  A low p-value (below significance level; an arbitrarily selected significance level 

of =0.05 was used in this study) indicates great significance of the test (variables are 

correlated).  A p-value greater than the selected  value indicates a lack of significance or 

correlation.  An R-value between 0.5 and 0.8 implies fair correlation while below 0.5 is 

considered to be low. 

The correlation analysis resulted in an R-value of 0.07016 and p-value of 0.6432, 

implying that the polishing rate (a4) and the terminal friction value F60 (F60@x1) are not 

correlated and are thus statistically independent. 
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4.1.2.1 Aggregate Size, Gradation and Type of Carbonate Aggregate 

In order to facilitate comparison of the F60 values for different specimens tested 

in this study, their polishing rates (a4 parameter of the model) calculated for the different 

specimens tested in Matrix I are presented in four different figures.  Figure 29 shows a 

general comparison.  Figures 30 and 31 show mixes with steel slag and with quartzite, 

respectively.  And Figure 32 shows a comparison where each point is the average of two 

similar mixes, which differed only with respect to the friction aggregate type (FAT); one 

mix contained quartzite (Q) and the other contained steel slag (SS).   

As seen in Figure 29, the average polishing rate for specimens with 9.5 mm 

NMAS was -0.022 while for specimens with a 19 mm NMAS it was -0.037.  In addition, 

the average value of a4 for samples (for 9.5 mm NMAS) with a coarse gradation was 

similar to that of samples with an s-shaped gradation and less negative for those samples 

with fine gradation.  The same general trend was observed for the three types of 

gradations in the 19 mm NMAS mixtures.   

In general, it could be noticed that mixes with a 19 mm NMAS have higher MPD 

values (refer to Appendix D, Tables D1 and D2 for detailed information) than those with 

a 9.5 NMAS; for mixes with a 19 mm NMAS the FM was also higher than for those with 

a 9.5 mm, as it was discussed in section 3.3.1.1, Table 4.  Most likely due to the higher 

MPDs, mixes with a 19 mm NMAS shown also higher F60@x1 values (as it is shown in 

Figures 33 to 36).  Generally less negative a4 values for mixes with a 9.5 mm NMAS is of 

the secondary importance, since the terminal friction level for those mixtures is lower 

than for mixtures with a 19 mm NMAS.   
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Figure 29. Test Matrix I; distribution of polishing rate, general comparison  
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Figure 30. Test Matrix I, mixes with 20% SS; distribution of polishing rate 
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Figure 31. Test Matrix I, mixes with 20% Q; distribution of polishing rate 
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Figure 32. Test Matrix I; distribution of polishing rate averaged for mixes with Q and SS 

(each point is an average of two cells) 
 
 

It should also be noted that the lower (less negative) polishing rate for the 9.5 mm 

NMAS mixes does not necessarily mean that pavements with this size of aggregates 

would have better frictional properties as discussed in more detail later in this section.   
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To explain this, the distribution of the F60 values at a number of wheel passes 

equal to x1 calculated for the different specimens tested in Matrix I are presented in four 

different figures: Figure 33  (which shows general comparison), Figures 34 and 35 

(separately for mixes with steel slag (SS) and with quartzite (Q), respectfully) and Figure 

36 (where each point is an average of two similar mixes, differ with respect to the friction 

aggregate type: one with Q and the other with SS).  As seen in Figure 33, the average 

terminal F60 value for specimens with 9.5 mm NMAS was equal to 0.26 and was lower 

than that observed for the specimens with 19 mm NMAS (equal to 0.31).  It could be 

concluded that for the 9.5 mm mixes smaller changes in friction occurred (refer to Figure 

29).  The overall frictional resistance of the 9.5 mm mixes, however, was also lower.  In 

addition, the average values of F60 for the 9.5 NMAS samples with fine gradations are 

similar to those with s-shaped gradations and slightly lower than those for the coarse 

gradations.  For the 19 mm NMAS mixes, the average F60 for the coarse (C) and fine (F) 

gradations are similar and slightly higher than those for the s-shaped (S) gradation.   
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Figure 33. Test Matrix I; distribution of friction terminal value (F60@x1), general 

comparison  
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Figure 34. Test Matrix I, mixes with 20% SS; distribution of friction terminal value 
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Figure 35. Test Matrix I, mixes with 20% Q; distribution of friction terminal value 
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Figure 36. Test Matrix I; distribution of friction terminal values averaged for mixes with 

Q and SS (each point is an average of two samples) 

 

When comparing the polishing rates (a4) of specimens with various types of 

carbonate aggregates (CAT), similarities between the dolomite (D) and hard limestone 

(HL) could be found, especially for mixtures blended with steel slag (SS) (see Figures 31 

and 32).  The terminal F60 values were similar for the dolomite and soft limestone (SL) 

blended with steel slag for 9.5 mm NMAS and between soft and hard limestone for the 

19 mm NMAS (see Figures 34 and 35).  No clearly visible similarities were observed for 

the blends with quartzite.  A possible explanation of this phenomenon could be related to 

the fact that the steel slag may have more dominant effect on the overall frictional 

properties than quartzite (at this specific addition level) thus masking the differences 

between various types of CAT; differences between specimens with various CAT are 

more visible in mixes containing Q type of FAT. 
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4.1.2.2 Friction Aggregate Type 

In this section, the influence of the FAT (steel slag and quartzite) on the frictional 

properties of the mixture is presented.  The influence of the FAT on the polishing rate 

(a4) is shown in Figure 37a while the influence of the FAT on the terminal friction value 

(F60@x1) is shown in Figure 37b.  Generally, specimens with steel slag exhibit slightly 

better (less negative, thus specimen is more resistant to polishing) a4 values than 

specimens with quartzite (R
2
 for this comparison is equal to 0.71).  These differences 

decrease as the a4 value increases.  No correlation (R
2
 equal to 0.10) was noticed when 

the terminal friction value (F60@x1) for mixes with two different types of friction 

aggregate were compared. 
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Figure 37. Influence of type of the friction aggregate type (FAT) on the frictional 

properties of mixes evaluated in test Matrix I: (a) polishing rate (a4) and (b) friction 

terminal value (F60@x1) 
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4.1.2.3 Friction Aggregate Content 

Specimens with various amounts of friction aggregate (FAC between 0% and 

70%) were tested in test Matrix II.  The improvement of mixture resistance to polishing 

(resulting with less negative value of the polishing rate (a4)) associated with the increase 

in the amount of friction aggregate could be clearly observed (see Figure 38).  In two 

cases (FAC=20 and 40%), specimens with steel slag showed better polishing resistance 

than quartzite specimens (lower polishing rate) and in two cases (FAC=10 and 70%) the 

specimens with quartzite showed more favorable response. 
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Figure 38. Distribution of polishing rate (a4) for test Matrix II mixes 

 

A comparison of the terminal friction values (F60@x1) for mixtures with various 

FAC is shown in Figure 39.  For specimens with FAC between 0% and 20% no 

significant changes in the F60 values were noticed.  However, for specimens with 40% 

and 70% of FAC the F60 values increased considerably.  The F60 value increased more 

for the specimens with quartzite than for those with steel slag.  
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Figure 39. Distribution of terminal friction values (F60@x1) for test Matrix II mixes  

 

Specimens with all three types of carbonate aggregate (CAT=D, SL and HL) and 

two addition levels of steel slag (FAC=10% and 20%) were incorporated in test Matrix 

III.  Again, the improvement in resistance to polishing (polishing rate, a4) associated with 

the increased content of FAC could be clearly observed when comparing each pair of the 

mix with same CAT (refer to Figure 40).  From the group of carbonate aggregates tested 

in this study (dolomite, “hard” limestone and “soft” limestone), the highest improvement 

of polishing rate (a4) caused by addition of steel slag was noticed for mixes with SL.  

Moreover, for specimens with 10% FAC, the lowest (most negative) a4 value was 

observed for mix with “soft” limestone.  In other words, the mix with “soft” limestone 

and only 10% steel slag yielded the worst polishing rate.  However, the addition of 10% 

more steel slag improved the polishing rate of this mix more than in the case of mixes 

with dolomite or “hard” limestone. 
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Figure 40. Distribution of polishing rate (a4) for test Matrix III mixes 

Comparison of the terminal friction values (F60@x1) for mixes with the same 

carbonate aggregate type and at the same addition levels as previously shown in 

Figure 40, is presented in Figure 41.  When compared at the same level of coarse 

aggregate content (CAT = 10% and 20%) the values of F60@x1 were very similar for all 

three types of coarse aggregate (CAT – D, HL and SL).  Higher F60@x1 values were 

observed for specimens with 20% of FAC than for specimens with 10% FAC.  
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Figure 41. Distribution of terminal friction values (F60@x1) for test Matrix III mixes 
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4.1.2.4 General Summary of the Influence of Different Factors on Frictional Properties 

It was found in this study that increasing the friction aggregate (quartzite or steel 

slag) content substantially improved polishing resistance.  In general, the polishing 

resistance of the smaller NMAS (9.5 mm) mixes was better than that of the larger NMAS 

(19 mm) mixes, however, the 19 mm mixes exhibited higher levels of friction than the 

9.5 mm mixes.  In addition, mixes with steel slag generally exhibited slightly higher 

polishing resistance than mixes with quartzite.  However, for those mixes no correlation 

between the influences of friction aggregate type and the terminal friction value 

(F60@x1) was clearly identified. 

The influence of the carbonate aggregate type (dolomite, “hard” limestone or 

“soft” limestone) on the frictional properties was also observed.  This influence, however, 

varied depending on the other factors being studied.  In general, the mixes with soft 

limestone exhibited lower friction properties than those with dolomite and hard 

limestone.   

 

4.1.3. Proposed Friction Predictive Model  

One of the objectives of this study was to develop a relationship (model) to predict 

the F60 values (output) based on the aggregate type, size and gradation (input).  The 

overall output of the model (shown in Figure 42) should also account for the cumulative 

number of wheel passes.  It should be noted, however, that due to a limited number of 

data points obtained from SMA and PFC mixtures, only Superpave mixes from test 
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Matrices I to III were used in the model development.  However, to check the general 

applicability of the proposed model, it was used to predict the a4 and F60@x1 values of 

the SMA and PFC mixtures as described in section 4.1.5.  (Additional research under a 

separate study is continuing to investigate and potentially validate this model. 

 

 

 

 

 

Figure 42. Overview of the general friction predictive model 

The transfer function shown in Figure 42 consists of the set of equations 

presented in section 4.1.1 (equations 24 through 26).  In order to predict the F60 value at 

any given polishing level, six parameters of the proposed polishing model (x0, x1, a0 – a3) 

must be determined. 

These parameters have been determined using SAS 9.1 software and are presented 

in Appendix F.  Using the same statistical software, multiple analysis of variance 

(ANOVA) was also performed, separately, for each estimate of the proposed polishing 

model parameter (x0, x1, a0–a3).  In general, there was a satisfactory significance level and 

random distribution of residuals.   

It should be realized, however, that the terminal frictional properties of the 

mixture depend mostly on only two of the six parameters discussed earlier.  These 
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parameters include the polishing rate (a4) and the friction terminal value (F60@x1).  As a 

result, the simplified friction model prediction (based on just the polishing rate (a4) and 

the friction terminal value F60@x1 was developed as discussed below.   

 

Figure 43. Polishing rate (a4) distribution 

 

First, the polishing rate (a4) parameters determined for all 46 specimens were 

summarized in one plot to investigate potential trends in the data distribution (as shown 

in Figure 43).  Note that specimens are numbered in the same order as is used in 

Appendixes C to E.  Then, the multiple ANOVA table was generated and the parameter 

estimates for the general linear model were calculated (refer to Table 18).  Since there 

were no replicates in this study, only one observation per cell is reported.   The overall 

model was found to be statistically significant with a p-value lower than 0.0001.  In 

addition, no statistically significant trends were observed for the residuals (see Figure 

44a), which appear to be normally distributed as indicated by the quantile-quantile (q-q) 
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plot shown in Figure 44b.  However, based on the discussion presented in sections 4.1.3.1 

to 4.1.3.3, some interactions between model parameters are known to exist.  Although 

these interactions are likely to lower the model reliability, they were not considered in 

model development.  Changes in the FAT and CAT variables (friction and carbonate 

aggregate types, respectively) are not statistically significant for the overall model 

predictability (p-values about or greater than the significance level of =0.05). 
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Figure 44. Residual distribution for the polishing rate (a4) prediction model: (a) residual 

vs. sample no. and (b) q-q plot  
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Table 18. ANOVA table and parameter estimates for the polishing rate (a4) 

 
Dependent Variable: a4                Sum of 
 Source                     DF        Squares    Mean Square   F Value   Pr > F 
 Model                      10     0.00460842     0.00046084     11.71   <.0001 
 Error                      35     0.00137795     0.00003937 
 Corrected Total            45     0.00598637 
 
               R-Square     Coeff Var      Root MSE       a4 Mean 
               0.769818     -21.08325      0.006275     -0.029761 
 
 Source                     DF      Type I SS    Mean Square   F Value   Pr > F 
 NM                          1     0.00141026     0.00141026     35.82   <.0001 
 FAT                         1     0.00001298     0.00001298      0.33   0.5695 
 FAC                         4     0.00218927     0.00054732     13.90   <.0001 
 G                           2     0.00096358     0.00048179     12.24   <.0001 
 CAT                         2     0.00003232     0.00001616      0.41   0.6665 
 
 Source                     DF    Type III SS    Mean Square   F Value   Pr > F 
 NM                          1     0.00187778     0.00187778     47.70   <.0001 
 FAT                         1     0.00018080     0.00018080      4.59   0.0391 
 FAC                         4     0.00169980     0.00042495     10.79   <.0001 
 G                           2     0.00095965     0.00047982     12.19   <.0001 
 CAT                         2     0.00003232     0.00001616      0.41   0.6665 
 
                                            Standard 
     Parameter            Estimate             Error    t Value    Pr > |t| 
 
     Intercept        -.0097813742 B      0.00512911      -1.91      0.0648 
     NM        19     -.0144444444 B      0.00209152      -6.91      <.0001 
     NM        95     0.0000000000 B       .                .         . 
     FAT       Q      -.0041033504 B      0.00191481      -2.14      0.0391 
     FAT       SS     0.0000000000 B       .                .         . 
     FAC       0      -.0320516752 B      0.00774414      -4.14      0.0002 
     FAC       10     -.0299148211 B      0.00549682      -5.44      <.0001 
     FAC       20     -.0139032747 B      0.00504132      -2.76      0.0092 
     FAC       40     -.0130000000 B      0.00627456      -2.07      0.0457 
     FAC       70     0.0000000000 B       .                .         . 
     G         C      -.0026382737 B      0.00235467      -1.12      0.2702 
     G         F      0.0093475298 B      0.00251145       3.72      0.0007 
     G         S      0.0000000000 B       .                .         . 
     CAT       D      0.0018330494 B      0.00241666       0.76      0.4532 
     CAT       HL     0.0020000000 B      0.00246108       0.81      0.4219 
     CAT       SL     0.0000000000 B       .                .         . 

 

In order to use the proposed model for the prediction of the polishing rate, various 

parameters shown in Table 18 have to be combined as shown in the example below (for 

the 19SS20S_SL mixture): 

a4 = intercept + aggregate/mixture parameters   (27) 

a4  = -0.0098 + 0.0144 (NMAS=19) + 0.0000 (FAT=SS) - 0.0139 (FAC=20%)  

+0.0000 (G=S) + 0.0000 (CAT=SL)      
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An analysis similar to that presented above for the prediction of the polishing rate 

a4 was also conducted for the prediction of the F60@x1 values.  Again, F60@x1 

parameters determined for all 46 specimens were compared to investigate potential trends 

in the data distribution (as shown in Figure 45).  

 
 

Figure 45. Terminal polishing level (F60@x1) distribution 

 

 

Again, the multiple ANOVA table was generated and parameter estimates for the 

general linear model were calculated (refer to Table 19).  In general, the data shown in 

Table 19 indicate that the model is statistically significant with a p-value lower than 

0.0001.  In addition, no statistically significant trends were observed for the residuals (see 

Figure 46a), which appear to be normally distributed as indicated by the quantile-quantile 

(q-q) plot shown in Figure 46b.  Again, no interactions were considered in the model 

development.  As could be expected, changes in the FAT and CAT variables (friction and 
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carbonate aggregate types, respectively) are not statistically significant for the overall 

model predictability (p-values about or greater than the significance level of =0.05). 

 
Figure 46. Residual distribution for the terminal polishing level (F60@x1) prediction 

model: (a) residual vs. sample no. and (b) q-q plot 
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Table 19. ANOVA table and parameter estimates for the terminal polishing level 

(F60@x1)  
 
Dependent Variable: F60@X1             Sum of 
 Source                     DF        Squares    Mean Square   F Value   Pr > F 
 Model                      10     0.03151605     0.00315160      6.21   <.0001 
 Error                      35     0.01776595     0.00050760 
 Corrected Total            45     0.04928200 
 
              R-Square     Coeff Var      Root MSE    F60_X1 Mean 
              0.639504      7.961113      0.022530       0.283000 
 
 Source                     DF      Type I SS    Mean Square   F Value   Pr > F 
 NM                          1     0.01640813     0.01640813     32.33   <.0001 
 FAT                         1     0.00018401     0.00018401      0.36   0.5510 
 FAC                         4     0.01234361     0.00308590      6.08   0.0008 
 G                           2     0.00250557     0.00125279      2.47   0.0994 
 CAT                         2     0.00007473     0.00003737      0.07   0.9292 
 
 
 Source                     DF    Type III SS    Mean Square   F Value   Pr > F 
 NM                          1     0.01629878     0.01629878     32.11   <.0001 
 FAT                         1     0.00003213     0.00003213      0.06   0.8028 
 FAC                         4     0.01344913     0.00336228      6.62   0.0004 
 G                           2     0.00256110     0.00128055      2.52   0.0947 
 CAT                         2     0.00007473     0.00003737      0.07   0.9292 
 
                                            Standard 
     Parameter            Estimate             Error    t Value    Pr > |t| 
 
     Intercept        0.3318794828 B      0.01841701      18.02      <.0001 
     NM        19     0.0425555556 B      0.00750998       5.67      <.0001 
     NM        95     0.0000000000 B       .                .         . 
     FAT       Q      0.0017296990 B      0.00687547       0.25      0.8028 
     FAT       SS     0.0000000000 B       .                .         . 
     FAC       0      -.0881351505 B      0.02780676      -3.17      0.0032 
     FAC       10     -.0956618399 B      0.01973734      -4.85      <.0001 
     FAC       20     -.0786893337 B      0.01810177      -4.35      0.0001 
     FAC       40     -.0465000000 B      0.02252995      -2.06      0.0465 
     FAC       70     0.0000000000 B       .                .         . 
     G         C      0.0187793867 B      0.00845486       2.22      0.0329 
     G         F      0.0067230267 B      0.00901782       0.75      0.4609 
     G         S      0.0000000000 B       .                .         . 
     CAT       D      0.0032556677 B      0.00867746       0.38      0.7098 
     CAT       HL     0.0010769231 B      0.00883697       0.12      0.9037 
     CAT       SL     0.0000000000 B       .                .         . 

 

 

The influence of various mixture parameters on the model predicted values for 

polishing rate (a4) and friction terminal value (F60@x1) is in general agreement with the 

trends summarized in section 4.1.3.4.  Specifically, the influence of type of friction and 

carbonate aggregates (FAT and CAT) variables is less significant than the influence of 

friction aggregate content (FAT).     
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4.1.4. Application of the Proposed Polishing Model to Non-Superpave Mixes  

Since the development of the proposed polishing model described in section 4.1.4 

was entirely based on Superpave designed mixtures, its general applicability to predict 

friction parameters of non-Superpave mixtures was investigated by analyzing two sets of 

field produced mixes with different gradations (SMA and PFC).  Those mixes were used 

for fabrication of the laboratory testing slabs of the same dimensions as those used for 

mixtures from matrices I-III.  Two samples of each mix were compacted and tested, 

which provided limited evaluation of repeatability.  As mentioned in section 3.3.1.1, the 

same type of plant produced SMA mixture was compacted into molds with two different 

depths (64 and 38 mm).  A similar procedure was applied to PFC mixture.   

Changes in the macrotexture (expressed by MPD) of the SMA and PFC 

specimens polished in the lab are shown in Figure 47 while changes in their dynamic 

friction (DF20) are presented in Figure 48.   

Although, in general, the macrotexture did not change during the polishing 

process, for the 38 mm thick PFC specimen a slight increasing trend in the MPD was 

noticed.  It could also be observed that, for the SMA specimens, MPD values were 

similar for both 38 and 64 mm thick specimens.  For the PFC mixture, however, the 

macrotexture varied depending on the thickness of the specimen and was about 2.3 mm 

for the 64 mm thick specimen and about 2.5 mm for the 38 mm thick specimen.  

Theoretically, the macrotexture of both 38 mm and 64 mm specimens should be similar 

(for the same mixture type).  The observed inconsistency could possibly be related to 

insufficient compaction of the 38 mm thick PFC specimen.  In addition, with an average 

value of about 1.7 mm, the MPD for the SMA mixture was lower than that measured for 
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the PFC mixture.  For comparison of those values to the field measurements, refer to 

discussion in section 4.3 of this report. 
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Figure 47. Changes in the macrotexture of the field mixtures polished in the laboratory 

As shown in Figure 48, after the initial polishing stage was completed (end of 

zone I), the dynamic friction (DF20) was found to be about 0.7 for SMA mixes and about 

0.5 for the PFC specimens.  The 64 mm thick PFC specimen experienced the highest 

variations in the dynamic friction values, while for the other samples those variations 

were less significant.  Friction for both the 64 and 38 mm thick PFC specimens was 

similar.  For the SMA specimens, higher values were noticed for the 64 mm thick 

specimen.  Again, this difference could be related to the compaction of the specimen. 
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Figure 48. Changes in the dynamic friction (DF20) values of the field mixtures polished in 

the laboratory 

 

Based on the texture and friction measurements, the F60@x1 values were 

calculated for each specimen and model parameters were generated.  Model fitting of the 

PFC and SMA test data is shown in Figure 49.  As expected, trends for the F60 values are 

similar to those observed for the DF20, as discussed in section 4.1.  It should also be 

noticed that although the prediction model was developed for lab produced mixes tested 

in Matrices I to III, this model fits the results of PFC and SMA samples well (refer to R
2
 

values presented in Table 20).  
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Figure 49. Frictional prediction model applied to the field mixtures polished in the 

laboratory 

 

Parameters of the friction model are summarized in Table 20.  It can be noticed 

that the polishing rate (parameter a4) has very low values in all four cases.  Based on the 

specimen composition (high amount of the steel slag used) those mixtures could be 

compared to the mixes tested in Matrix II (mixes with 70% steel slag).  However, the 

polishing rates observed for the SMA and PFC specimens have even lower values 

(specimens are more resistant to polishing).   

In addition, the terminal friction value (F60@X1) for all four samples was above 

0.38, which is a high value (in comparison to the terminal friction values for specimens 

tested in Matrices I-III, where a maximum value of 0.36 was determined for the specimen 

with the 70% quartzite). 
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Table 20. Summary of the polishing prediction applied to the PFC and SMA mixtures 

tested in the laboratory  

Mixture Type, 

Specimen Thickness 
SMA 3.8 cm SMA 6.4 cm PFC 3.8 cm PFC 6.4 cm 

R
2
 0.99 0.79 0.86 0.96 

a4 -0.006 -0.015 -0.005 -0.021 

F60@x1 0.450 0.486 0.414 0.386 

xo 7.1 15.0 7.0 7.5 

 

4.1.5. Volumetric Properties 

To determine the actual air content in the test specimens, cores were extracted 

from friction test slabs and used for volumetric analysis.  From each slab, two cores were 

extracted, both of them positioned in the polisher wheel track: from the “corner” and 

“side” locations (see Figure 20).  It was found that the average absolute differences in air 

content between those two locations was about 1%.  In most cases, the “corner” location 

showed higher air content.  It also was found that, in general, specimens with “coarse” 

and “fine” blend gradations were better compacted than those with the “s-shaped” 

gradation.  Those observations could be related to the effect of the particles interlocking, 

which was probably more pronounced for the s-shaped mixtures.  It is expected that for 

such mixtures a higher compactive effort would be needed to reach a compaction level 

similar to the one obtained in fine and coarse graded mixtures.  The overall range of air 

contents in the actual slabs tested in Matrices I to III varied between 11.5% and 19.5%, 

with the average value of 15% air voids.  Detailed information about measured air 

contents is provided in the Appendix E, in Table E 1.  The air content in the SMA slabs 

was 15.1% and 12.7% (for 38 mm and 64 mm thick slabs, respectively) and in the PFC 

slabs was 24.2% and 22.6% (for 38 mm and 64 mm thick slabs, respectively). 
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This determined air content is higher than it was expected (about 8-10% for all 

mixtures but PFC, for which about 22% voids was expected), based on the theoretical 

calculations which utilized the weight of the mix and the volume of the mold.  Most 

likely reasons for this discrepancy are the relatively small mass of the compactor, 

relatively small height (38 and 64 mm) and relatively small area of the molds (wall 

effects).  It could be expected that the air voids would be preferentially generated in the 

contact areas between the sample and comparatively rough wooden base of the mold.  

The generation of these voids is more difficult to control in relatively thin specimens such 

as those used in this study.  The void content of the top surface, however, which was in 

contact with the relatively smooth surface of the aluminum plate, could be expected to be 

lower than the bottom of the slab, so the effect on the friction and texture measurements 

may have been smaller than the average air void content might suggest. 

The visual examination of the extracted cores revealed random orientation of 

particles in cores from both types of specimens and apparently higher void contents near 

the bottom of the slab.. 

 

4.2. Field Study 

The focus of the field part of the study was on texture/friction related tests and 

properties.  In addition, this section also presents development of the frictional baseline 

values and requirements.    
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4.2.1. Establishment of Baseline Friction Values and F60 Requirements 

In this portion of the study, the two friction measurement devices are compared 

and an attempt to determine the F60 friction requirement is presented.  In addition, the 

friction value baseline, which could be used to evaluate the accuracy of the laboratory 

friction and polishing test method, is discussed.  

 

4.2.1.1 Theoretical Study: Friction Simulation using the PIARC Model   

The PIARC model (described in section 2.3.3.) was used to simulate the response 

of two different devices (the DFT and the towed friction trailer) hypothetically operated 

on a pavement with a certain frictional performance.  This attempt was made to 

determine and to compare the theoretical response of those devices while operating on 

pavements with various macrotextures. 

It should be noted that in order to generate the hypothetical speed constant (Sp) 

data for those two devices, the pavement macrotexture data (MPD values) were assumed 

to be obtained from the CTM device and treated as a variable in the model.  The assumed 

range of the MPD values was quite wide (from 0.3 mm to 2.7 mm) covering the typically 

observed field macrotexture data.  In addition, it was assumed that the friction trailer was 

equipped with both smooth and rib tires and that it was travelling at a speed of 64 km/h 

(common speed for this device).  The above assumptions allowed for an adherence to a 

realistic range of friction values while performing the simulations.   

As implied by equations 9 to 11 and by equation 13 (discussed in section 2.3.3. 

and repeated below for the convenience of the reader), the Sp value (when using the CTM 

device) can be calculated according to equation 10 while the F60 value (when using DFT 
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device) can be calculated according to equation 9. The F60 value (when using the 

ASTM E 274 friction trailer) can be calculated according to equations 11 and 13 (for tests 

conducted using smooth and rib tires, respectively): 

SpeDFF

40

20732.0081.060                     (repeated eq. 9)
 

MPDS p 7.892.14                  (repeated eq. 10) 

 

SpeSSNF

4

)64(01.0925.0045.060        (repeated eq. 11) 

 

MPDeRSNF Sp 098.0)64(01.0607.0023.060

4

   (repeated eq. 13) 

 

In order to simplify the comparison of the friction trailer and DFT-based F60 

values, it was first assumed that all virtually tested pavements had a relatively good 

calibrated wet friction with the F60 value equal to 0.35.  Since the macrotexture was used 

as a variable in these simulations, in order to reach the fixed value of F60=0.35, the 

microtexture was also required to change.  

Theoretical results of simulation tests conducted with both test devices (DFT and 

friction trailer) are shown in Figure 50.  It could be noted that the friction trailer 

responses strongly depended on the type of test tire used.  The SN(64) value for the 

smooth tire seems to steadily increase with an increase in the MPD value, while the SN 

decreases with an increase in the MPD for the rib tire.  The rate of increase of the SN(64) 

value for the smooth tire was relatively low, with the overall change (over the entire 

range of MPD value) not exceeding 5 SN units.  At the same time, the rate of SN change 
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for rib tire was higher as was the overall friction change (about 30 SN units).  The curves 

corresponding to these two types of tires intercept at an MPD value of about 1.75 mm.  

At this MPD value the common SN number for both tires was about 32.  For the DFT 

device, relatively large changes were noticed for virtual tests on a surface with poor and 

average macrotexture (MPD below 1 mm) while for the surfaces with higher 

macrotexture, changes in the DF20 values were relatively small.  
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Figure 50. Theoretical relationship between MPD, SN and DF20 (for ASTM E 274 

friction trailer and DFT device, respectively) 

 

Simulations showing the influence of DF20 and MPD values on the F60 values 

were described earlier (see section 2.3.3) and are shown in Figure 3.  Similar simulations, 

this time applied to the friction trailer, are presented below.  During the first case of this 

simulation (for the rib tire), SN(64)R values were fixed (SN=35) and MPD data were 

changed in a range from 0.3 to 2.7 mm.  Corresponding F60 values were then calculated 

using the previously introduced equation 13 (for the friction trailer).  (Note: In order to 

use equation 13, the MPD values were used to calculate Sp using equation 10.)  Then, for 
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these F60 and MPD values, the smooth tire SN(64)S values were determined using 

equations 11 and 10.   

During the second case of this simulation, the smooth tire SN(64)S values were 

fixed (SN=35) and MPD data were again changed in a range from 0.3 to 2.7 mm.  

Corresponding F60 values were then calculated using previously introduced equations 11 

and 10.  Then, for these F60 and MPD values, the SN(64)R values were determined using 

equations 13 and 10.  The results of simulations conducted for the friction trailer are 

shown in Figure 51.  In the first case (Figure 51a) the SN(64) results for virtual tests with 

rib tire remain constant (MPD and thus F60 change) and virtual test results for the 

smooth tire are recalculated to fit the MPD and F60.  In the second case (Figure 51b), the 

SN(64) results for virtual tests with the smooth tire remain constant while the results for 

the rib tire are adjusted. 
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Figure 51. Theoretical relationship between MPD (and F60) for ASTM E 274 friction 

trailer: (a) SN(64) values for rib tire are fixed and for smooth are adjusted and (b) SN(64) 

values for smooth tire are fixed and for rib are adjusted 

Note: the reversed orientation of the F60 axis in Figure (b) 
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From this simulation it could be noted that if the rib tire SN(64) results are fixed 

and macrotexture change from 0.3 to 2.7 mm, the F60 will change from about 0.23 to 

0.44.  In addition, if the macrotexture and F60 change in this range, the SN for the 

smooth tire will change from about 20 to 43.  On the other hand, if the smooth tire 

SN(64) results are fixed and macrotexture changes from 0.3 to 2.7 mm, the F60 will 

change from about 0.40 to 0.38 (will decrease).  In addition, if the macrotexture and F60 

change in this range, the SN for rib tire will change from about 54 to 20.  In other words, 

depending on the type of tire, there is a completely different trend on the sensitivity of the 

SN(64) values to changes in microtexture. 

Finally, it could be observed that no single number could be employed to correlate 

between the results of tests conducted with the ASTM E 274 friction trailer using 

different tires. 

 

4.2.1.2 Development of Baseline Frictional Values 

In order to determine a baseline of the frictional properties for existing 

pavements, a total of 25 different sections were tested.  Due to the commonly 

acknowledged seasonal changes in the frictional values, an attempt was made to compare 

different sections using data collected within about three months (August/October).  The 

data presented in Table 21 were obtained in the following way: 

 For DGA, SMA and PFC sections, the CTM/DFT tests were conducted in 

August and in October.  Results were averaged to predict values in September.  

Friction trailer tests were conducted in September. 
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 For test track sections (SC, TC and HMA-TT), the CTM/DFT and friction 

trailer tests were conducted several times in August and September.  Data from 

this time period were averaged. 

 For the HM-IN sections (sections 1 to 8), the CTM/DFT and friction trailer tests 

were conducted in a similar time period. 

 For the HM-IA sections (sections 1 to 11), the CTM/DFT data were obtained in 

September 2006 and friction trailer tests were conducted in August/September 

2007.  The friction trailer SN values were interpolated from tests conducted in 

2007 and from the historical data provided by Iowa DOT (sections were 

periodically tested every other year during the late summer/early fall season) to 

predict frictional values for the same time period as CTM/DFT tests were 

conducted.  

Note that the CTM/DFT values may vary, depending on the tested spot’s transverse 

location (as discussed in section 2.3.3).  As used here, data from the left and right 

wheelpaths were averaged (data from the centerline path were excluded).  For the 

complete sets of MPD and DF20 data refer to Appendix H, Table H 1. 
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Table 21. Baseline: summary of the frictional properties of the tested section 

Section Years in 

Service 

at Test 

Time 

Cumulative 

Traffic, 

NVA, 10^6 

MPD, 

mm 

DF20 F60 (from 

CTM/DFT) 
SN(64)S

a
 SN(64)R

a 

PFC 3 46.7 1.41 0.57 0.40 48 
* 

SMA 3 46.7 1.03 0.68 0.42 51 * 

DGA 3 22.8 0.57 0.46 0.26 29 * 

HMA-TT 
b b

 0.84 0.58 0.35 45 (38)
a
 52(43)

 a
 

SC 
b
 

b
 0.06 0.40 0.12 11(5)

 a
 33(15)

 a
 

TC 
b
 

b
 1.36 0.88 0.56 67(60)

 a
 68(60)

 a
 

HM-IN-1 2 

1 

 

6.1 0.40 0.52 0.25 47 54 

HM-IN-2 1 1.1 0.30 0.50 0.22 33 54 

HM-IN-3 1 1.3 0.33 0.55 0.24 45 57 

HM-IN-4 10 54.9 * * * 22 * 

HM-IN-5 10 54.9 * * * 28 * 

HM-IN-6 1 1.0 0.37 0.61 0.27 37 58 

HM-IN-7 1 0.7 0.35 0.69 0.29 58 62 

HM-IN-8 1 1.3 0.38 0.65 0.29 45 58 

HM-IA-1 5 17.2 0.66 0.48 0.28 
* 

54 

HM-IA-2 15 119.7 0.67 0.38 0.25 
* 

47 

HM-IA-3 9 15.2 0.49 0.25 0.17 
* 

28 

HM-IA-4 22 59.3 0.94 0.32 0.24 
* 

34 

HM-IA-5 15 37.7 0.87 0.22 0.19 
* 

30 

HM-IA-6 15 25.1 1.27 0.66 0.44 
* 

63 

HM-IA-7 14 38.2 0.63 0.62 0.34 
* 

54 

HM-IA-8 11 36.7 0.79 0.51 0.32 
* 

58 

HM-IA-9 24 32.8 0.23 0.27 0.14 
* 

34 

HM-IA-10 17 153.7 1.26 0.27 0.22 
* 

33 

HM-IA-11 11 35.9 0.69 0.41 0.26 * 46 

* data not available, 

a
 for test track, tests were conducted at 48 km/h (instead of 64 km/h used for all other sections); using 

equations 6 and 8, SN values could be adjusted to the speed of 64 km/h (shown in parentheses);  

b
  test track is closed to traffic other than the friction test vehicles. 

When available, information on the section age and traffic volume was also 

collected but no direct correlation between these variables and frictional properties was 

found.  
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As expected, the SC (smooth concrete) section exhibited the lowest values of 

macrotexture while the SMA, PFC and TC (tined concrete) sections had MPD values in 

the upper range.  In addition to these “less common” surfaces, two dense graded asphalt 

sections (namely HM-IA-6 and HM-IA-10) had macrotexture with MPD values greater 

than 1 mm.  It should also be noted that all asphalt sections with high macrotexture 

values also had relatively high (FM>4.6) values of fineness modulus (refer to Tables 10 

and 12 for details).  The typical MPD values of sections constructed after the middle 

1990s were in the range between 0.6 to 0.9 mm.  Low MPD was observed for section 

HM-IA-9; for this mixture the FM value was also low (FM=3.48).   

Similarly, high DF20 values (which were about 0.6 to 0.9) were observed for the 

PFC, SMA and TC sections.  For typical dense graded asphalt sections, those values were 

about 0.4 to 0.6.  In most cases, sections with low DF20 values (DF20 below 0.3) were 

typically constructed a long time ago (15+ years) with mixes containing significant 

amounts of limestone.  

For the limited number of asphalt sections where SN values using the smooth tire 

were determined, those values generally ranged between 23 and 50 (at 64 km/h).  For 

tests with the rib tire, the common range was between 35 and 60 (at 64 km/h).  

Comparison of SN and DF20 values is presented in the subsequent section.    

It should be noted that for the pavements tested in this study, the usual difference 

between the highest and lowest results for the various tests (when tests were conducted 

on the same day by one operator) were in the range of 0.08 mm (when MPD was 

determined), 0.05 (when DF20 was determined), 5-6 (when SN(64)S was determined) and 
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5-6 (when SN(64)R was determined).  These values, then, could be considered 

representative of typical single-operator testing variability. 

 

4.2.1.3 Frictional Requirements  

In this study, an attempt was made to determine the calibrated wet friction (F60) 

flag value.  The analysis shown here utilizes the SN requirement of SN(64)R=38 

[Kummer and Meyer 1967] and SN(64)S=20 [Li et al. 2003] (discussed in detail in 

chapter 2.5) to develop the recommended value of F60. 

The MPD, DF20, SN(64)S and SN(64)R data shown in Table 21 were used as 

inputs to the previously discussed  friction prediction model to develop the F60 values 

(see section 2.3.3).  For the convenience of the reader, the formulas needed to determine 

F60 values are repeated below:  

MPDS p 7.892.14                  (repeated eq. 10) 

SpeDFF

40

20732.0081.060                     (repeated eq. 9) 

SpeSSNF

4

)64(01.0925.0045.060        (repeated eq. 11) 

 

MPDeRSNF Sp 098.0)64(01.0607.0023.060

4

   (repeated eq.13) 

 

To differentiate F60 values determined using the two different friction 

measurement devices (DFT and friction trailer), F60 values calculated using DFT data 

are referred to as “F60” but the F60 values calculated using friction trailer test results are 
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referred to as “F60 TST” and “F60 TRT” for tests conducted with smooth and rib tires, 

respectively. 

As shown in Figure 52, there is a fair correlation (R
2
=0.61) between F60 and F60 

TST.  Better (R
2
=0.79), but still not perfect, is the correlation between F60 and F60 TRT.  

It could also be noticed that the F60 values developed from the DFT measurements are 

lower than those developed from tests with the friction trailer. 
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Figure 52. Comparison of calibrated wet friction values (F60) developed from DFT 

device with F60 calculated using friction trailer data: using (a) smooth (F60 TST) and (b) 

rib (F60 TRT) tire 

 

Due to the limited number of sites (eight sites only) where tests with the friction 

trailer using both the rib and smooth tire were conducted, the relationship between F60 

TST and F60 TRT is, from the statistical point of view, limited.  However, as shown in 

Figure 53, a linear relationship with a relatively high R
2
 equal to 0.87 exists. 
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Figure 53. Comparison of calibrated wet friction (F60) developed from friction trailer 

tests using smooth (F60 TST) and rib (F60 TRT) tire 

 

Although the calibration factors developed by the international PIARC study 

(Wambold et al. 1996) were applied to current data used for calculation of the F60 

values, thus theoretically ensuring equivalency of results from different devices, the 

analysis shown above indicates that there were some differences.  The possible reasons 

are discussed later in this section. 

The relationship between friction trailer (using rib tire) test results and the 

corresponding F60 value is shown in Figure 54a, while a similar relationship, but for the 

smooth tire, is shown in Figure 54b.  Based on those relationships, the requirement of 

SN(64)R=37 [Kummer and Meyer 1967] could be correlated with the F60 value; the  

corresponding number would be F60=0.27.   

Next, the F60=0.27 could be correlated with the trailer test with smooth tire; the 

corresponding value would be SN(64)S=22.  This value of 22 is close to the flag value 

accepted by INDOT [Li et al. 2003], where SN(64)S=20. 
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Figure 54. Development of the F60 flag values for friction trailer with: (a) rib (F60 TRT) 

and (b) smooth (F60 TST) tire 

 

The impression is that F60=0.27 could also represent the flag value for tests 

conducted with the CTM and DFT devices.  However, based on the relationships shown 

in Figure 52, F60 values developed from the various types of equipment are not equal.  

Based on those plots, the flag value should be lowered to 0.17-0.20 (note that this 

lowered F60 value corresponds well with the friction threshold level accepted for 

highways in New Zealand [Yeaman 2005]).  

It should be noted that the F60 values developed during the international PIARC 

study [Wambold et al. 1996] were an attempt to harmonize various friction measuring 

devices.  Data presented here shows only a limited relationship between the  various 

friction measuring techniques.  As is always the case during testing, equipment and 

human inconsistency may play an important role. It is also possible that the equipment 

used during the international PIARC study had slightly different characteristics than that 

used here, so those applied correction factors may contain an error.  Note also that the 



 

 

139 

same devices were used for all the CTM and DFT measurements; moreover, only three 

operators conducted those tests.  However, four different ASTM E 274 friction trailers 

and multiple operators conducted the towed friction tests.  

 

4.2.2. Variations in Frictional Properties 

In this part of the report, the influence of traffic, seasons of the year and 

transverse location within the driving lane is discussed.  

 

4.2.2.1 Periodic Tests of Highway Test Sections  

Three highway test sections (DGA, PFC and SMA) were periodically tested for 

friction.  The cumulative traffic level on these sections was expressed as the number of 

vehicle axles.  This number was calculated based on the previously defined number of 

vehicle axles (NVA) passing the test section multiplied by the period of time when the 

sections were exposed to traffic (see section 3.3.2.3). Note that this is only an 

approximate calculation and thus it may contain errors.  However, for the purpose of this 

study, this approximated calculation should be precise enough.  Test data shown in this 

section were averaged over the specific section and transverse position (left, center and 

right wheel path) for the DFT/CTM devices and over the specific section for the friction 

trailer (tests were conducted in left wheel path only). 

Changes in the macrotexture (expressed by MPD values) are shown in Figure 55  

(dashed lines are used to express the MPD range for each section).  The MPD value for 

the PFC section was about 1.4 mm while for the SMA and DGA sections it was about 1.1 

mm and 0.5 mm, respectively.  For the SMA and PFC sections, the MPDs obtained from 



 

 

140 

the pavements before they were opened to traffic were similar to those collected at later 

ages.  However, for DGA the macrotexture increased after the initial tests (conducted 

soon after opening to traffic).   
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 Figure 55. Changes in macrotexture (MPD) over time and traffic for PFC, SMA and 

DGA sections 

 

 

Changes in the dynamic friction (DF20) values are shown in Figure 56.  It can be 

observed that the DF20 values for the PFC and SMA pavements not yet opened to traffic 

were lower than those measured at later ages.  This finding is not surprising, as a new 

pavement typically has lower microtexture due to the film of binder coating the aggregate 

surface.  This film is typically quickly removed by the polishing action of tires, resulting 

in increased friction.  For the DGA section, however, no significant changes in the DF20 

values were observed when initial test results were compared with those collected at later 

ages.  The DGA surface layer was placed about six weeks before the friction test and was 

exposed to moderate car traffic and limited truck traffic prior to the first test.  
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Figure 56. Changes in dynamic friction (DF20) as a function of time and traffic for PFC, 

SMA and DGA sections 

 

For the analysis of the variations in DF20 values, not only the total cumulative 

traffic should be taken into account, but also the date when the tests were conducted.  

Indeed, the seasonal variations reported in the literature could be observed in the test 

results reported here.  For example, when comparing the test results obtained during 

different months of 2007 it can be observed that DF20 values recorded in August were 

higher than those recorded in October. 

When only the friction data of tests conducted in a similar season (in October and 

November) of 2005-2007 are compared for the same section, average DF20 values would 

be about 0.60 for PFC, 0.73 for SMA and 0.42 for DGA. 

It was noticed that results of tests conducted in the Fall of 2006 (for all three 

sections) were lower than the average values.  This can be most likely explained either as 

a seasonal variation phenomenon or as a measurement error. 
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Results of the calibrated wet friction F60 values (calculated using both the DFT 

and the CTM) are shown in Figure 57.  The general trend in this data followed previously 

mentioned results of tests with the DFT device alone (DF20 values).  Again, when only 

the results of tests conducted during similar months of different years (from September to 

November) are compared, a decreasing logarithmic line between results (for the same 

section/pavement type) can be drawn.  The F60 value would then be about 0.41 for PFC, 

0.46 for SMA and 0.24 for DGA. 

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50
no. of axle passes, 10^6

F
6

0

PFC

SMA

DGA

9/2003

8/2005 11/2005

10/2006

5/2006

11/2006

9/2003
4/2007

4/2007

7/2007

10/2007

10/2007

8/2007

For SMA
For PFC

 

Figure 57. Changes in calibrated wet friction (F60) over time and traffic for PFC, SMA 

and DGA sections 

In addition to the friction measurements conducted with the DFT device, changes 

in friction were also monitored using the ASTM E 274 friction trailer.  The test results 

from the friction trailer, presented in Figure 58, seem to correspond well with those 

presented previously for the DFT device (see Figure 57).  For example, for the PFC and 

SMA sections, the parabolic trend in the data is clearly visible (expressed as dotted 

curves).  Note that for the PFC and SMA sections, the friction tests were conducted 

during the Fall season only to avoid seasonal variations.   
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Although the presented set of data is limited to four years only, friction data 

presented in Figures 57 and 58 for the SMA section appears to have stabilized.  The 

distribution of data for the PFC section suggests that the friction may continue to 

decrease, however only slightly.  The maximum friction value overall was observed for 

the PFC section (SN=57) while for the SMA section the maximum SN was 54.   

A wider range of changes of the friction value (SN) was observed for the PFC 

section than for the SMA.  For tests conducted with the CTM and DFT devices during 

similar seasons of different years, the relative changes in F60 values were similar for both 

the SMA and PFC sections.  F60 values for the SMA section were higher. 
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Figure 58. Changes in ASTM E-274 friction trailer measurements (SN(64)S) as a 

function of traffic for PFC, SMA and DGA sections 

Significantly lower frictional values were observed for the DGA section with both 

the DFT and friction trailer.  The friction of this section was tested by the trailer only two 

times, in 2004 and in 2007.  Friction values obtained from these two sets of 

measurements were similar (SN about 27).  With such limited data, it is hard to conclude 

whether the friction values of this section followed any trend.  
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The data presented here confirmed that environmental factors indeed influence the 

friction. Both short-term (seasonal) and long-term (year-to-year) frictional variations 

were observed.  

In order to provide an additional type of friction data, which could be particularly 

useful for those researchers who are still using the BSRT device, a limited number of 

tests with this equipment were also conducted.  During those measurements (conducted 

in the same spots and at the same time as the last friction tests with the DFT/CTM 

devices), all three sections were tested.  Test results were averaged accounting for the 

device orientation (transverse, longitudinal and diagonal) and for location of the test spot 

within the specific section.  Again, the SMA section had the highest friction (BPN=60) 

while the DGA section had the lowest (BPN=51).  For PFC section the average BPN 

value was equal to 57. 

 

 4.2.2.2 Periodic Tests of Test Track Sections  

Frictional properties of the INDOT test track were investigated from June 2005 

for a period of two years.  The data presented here reflects the average properties for each 

given section. 

Results of the macrotexture measurements are shown in Figure 59.  For the SC 

section, the MPD values were found to be very low and relatively constant.  However, for 

HMA-TT and for TC section, variations in the results could be observed.  MPD values 

for TC section oscillated about the MPD of 1.36 mm, while for HMA-TT section, a slight 

increase in the MPD value could be observed.  A visual examination of the HMA-TT 

section suggested that in some spots some of the aggregate particles appeared to have 
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been mechanically detached from the surface (possibly due to the forces caused by the 

trailer braking action). 
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Figure 59. Macrotexture (MPD) values collected from the INDOT test track for three 

different surfaces: TC, HMA-TT and SC 

Changes in the dynamic friction (DF20) value for the same surfaces are shown in 

Figure 60.  A relatively large variation in the test results can be observed.  Variations 

were possibly influenced by the weather conditions.  It is expected that seasonal 

variations would be more significant for the test track, which is closed to traffic, than for 

highways.  For such roads, dust can accumulate on the surface of the road, especially in 

the absence of “suction” provided by the tires.  This dust layer may significantly change 

the frictional properties of the surface. 

Tests conducted during the summer of 2007 were more frequent than earlier.  The 

upward trend in the DF20 values (observed for all three sections tested in the 2007) could 

be related to weather changes during the summer (humidity, temperature) which caused 

changes in the dust accumulation on the surface. 
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Figure 60. Dynamic friction (DF20) values collected from the INDOT test track for three 

different surfaces: TC, HMA-TT and SC 

 

As expected, the general trend of the wet pavement friction F60 (presented in 

Figure 61) corresponds well with the trend for DF20.   
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Figure 61. Calibrated wet friction (F60) values observed for the INDOT test track 
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Results of the friction measurements conducted with the ASTM E 274 towed 

friction trailer using the smooth tire are presented in Figure 62.  It can be observed that 

for three sections tested (SC, TC and HMA-TT), the changes in the friction follow a 

similar trend (within a given time period).  Due to much lower values of friction for the 

SC section, no definite trends were observed. 
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Figure 62. Skid number (measured by (ASTM E 274) friction trailer) on the INDOT test 

track monitoring: results for tests with smooth tire 

 

For the HMA-TT section, a slight decrease in the skid number is observed, when 

results from three different years are compared.  This observation could be related to 

changes in the macrotexture of the HM-TT section (refer to Figure 59). 

Results of the friction tests conducted with the friction trailer using a rib tire are 

presented in Figure 63.  This set of data is more limited, since tests with the rib tire were 

conducted only monthly as opposed to tests with a smooth tire that were conducted 

weekly.  Although the results of tests with those two tires have different values 

(especially for the smooth concrete section), the general trend remains the same (compare 
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Figure 62 and 63).  Relative differences between results of tests with rib and smooth tires 

are discussed in section 4.2.1.1. 
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Figure 63. Skid number (measured by (ASTM E 274) friction trailer) on the INDOT test 

track monitoring: results for tests with rib tire 

 

When comparing the friction trailer and DFT data it can be observed that, in 

general, the plots showing the changes in friction have similar shape.  Similarly, when 

analyzed during similar periods, both data sets show the influence of seasonal variations. 

As on highway test sections tested periodically, limited testing was conducted 

with the BSRT device on the test track.  During those measurements (conducted in the 

same spots and at the same time as the last friction tests with the DFT/CTM devices), all 

three test track sections were tested.  These tests result were averaged over the device 

orientation (transverse, longitudinal and diagonal) and over different spots tested within 

each specific section.  Again, the highest friction was measured on the TC section 

(BPN=76) while the SC section exhibited the lowest friction (BPN=58).  For HMA-TT 

section, the average BPN value was equal to 69. 
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4.2.2.3 Transverse Variation of Frictional Properties  

A comparison of the MPD and DF20 values obtained from measurements 

conducted at three different transverse locations of the test devices (left wheel path, 

center of the lane and right wheel path) is shown in Figures 64 to 67.  Visual assessment 

of the plots shown in those figures implies that the frictional properties depended on the 

transverse location of the test spot.  To investigate this hypothesis, analysis of variance 

(ANOVA) was performed using the SAS 9.1 software.  For the macrotexture data, one 

way ANOVA was used to reject either the null hypothesis (MPD values are the same, 

H0=μleft=μcenter=μright) or the alternative hypothesis (the MPD values are not equal).  

Similar analysis was performed for the DF20 values. 

0.4

0.8

1.2

1.6

P
F

C
_

8
_

0
5

P
F

C
_

1
1

_
0

5

P
F

C
_

1
0

_
0

6

P
F

C
_

4
_

0
7

P
F

C
_

8
_

0
7

P
F

C
_

1
0

_
0

7

S
M

A
_

8
_

0
5

S
M

A
_

1
1

_
0

5

S
M

A
_

1
0

_
0

6

S
M

A
_

4
_

0
7

S
M

A
_

8
_

0
7

S
M

A
_

1
0

_
0

7

D
G

A
_

5
_

0
6

D
G

A
_

1
1

_
0

6

D
G

A
_

4
_

0
7

D
G

A
_

7
_

0
7

D
G

A
_

1
0

_
0

7

M
P

D
, 
m

m

Left

Center

Right

 

Figure 64. Influence of the transverse location and time of the test on the macrotexture 

(MPD) of the PFC, SMA and DGA sections  

Note: Arrows indicate sections where location was a significant factor. 
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Figure 65. Influence of the transverse location on the dynamic friction (DF20) of the PFC, 

SMA and DGA sections  

Note: Arrows indicate sections where location was a significant factor. 
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Figure 66. Influence of the transverse location on the macrotexture (MPD) of the HM-IN 

and HM-IA sections  

Note: Arrows indicate sections where location was a significant factor. 
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Figure 67. Influence of the transverse location on the dynamic friction (DF20)of the 

HM-IN and HM-IA sections  

Note: Arrows indicate sections where location was a significant factor. 

 

An ANOVA table was determined for each test section (and test time) separately.  

The p-values obtained are summarized in Table 22 for the PFC, SMA, DGA sections and 

in Table 23 for the HM-IN and HM-IA sections.  For those sections where the p-value 

was lower than the significance level ( =0.05), an additional analysis (multiple 

comparison of means) was performed.  Bonferroni comparison of means was used to 

determine if differences in the MPD (or DF20) values in the left, right and center locations 

were statistically significant.  Locations that were similar (at a significance level of 

=0.05) fall in the same grouping.  These results are presented in Tables 22 and 23. 
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Table 22. Influence of the transverse location and the date of test on the frictional 

properties of PFC, SMA and DGA sections 

Section Time of 

Test 

Section 

Age, 

Years 

No. of 

Axle 

Passes, 

10^6 

MPD: 

Location  

Comparison
a
  

p-value 

Locations 

Stat. 

Different
b
 

DF20: 

Location  

Comparison
a
  

p-value 

Locations 

Stat. 

Different
b
 

PFC 8/2005 2.0 23.3 0.815  0.008 L vs. R 

PFC 11/2005 2.3 25.7 0.250  0.614  

PFC 10/2006 3.2 36.0 0.566  0.295  

PFC 4/2007 2.7 42.1 0.752  0.042 Not Signif. 

PFC 8/2007 3.0 45.5 0.995  0.375  

PFC 10/2007 3.2 47.8 0.003 R vs. L 0.087  

SMA 8/2005 2.0 23.3 
0.275  <.001 

L and C vs. 

R 

SMA 11/2005 2.3 25.7 0.775  0.486  

SMA 10/2006 3.2 36.0 0.103  0.211  

SMA 4/2007 2.7 42.1 0.116  0.110  

SMA 8/2007 3.0 45.5 
0.004 L vs. C 0.011 

L and R vs. 

C 

SMA 10/2007 3.2 47.8 
0.008 R vs. L  <.001 

L and R vs. 

C 

DGA 5/2006 1.8 15.8 0.236  0.040 Not Signif. 

DGA 11/2006 2.3 18.5 0.968  0.207  

DGA 4/2007 2.8 20.8 
0.178  <.001 

L and R vs. 

C 

DGA 7/2007 3.0 22.2 
0.233  <.001 

L and  R vs. 

C 

DGA 10/2007 3.3 23.4 0.004 L vs. C 0.072  

a
 p-value generated using ANOVA table, 

b
 locations statistically different based on the Bonferroni comparison of means method. 
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Table 23. Influence of the transverse location on the frictional properties for HM-IN and 

HM-IA sections  

Section Section 

Age, 

Years 

No. of 

Axle 

Passes, 

10^6 

MPD: 

Location  

Comparison
a
  

p-value 

Locations 

Stat. 

Different
b
 

DF20: 

Location  

Comparison
a
  

p-value 

Locations 

Stat. 

Different
b
 

HM-IN-1 2 6.4 0.011 R vs. C <.001 
L vs. C vs. 

R 

HM-IN-2 1 1.1 0.085  0.004 
L and R vs. 

C 

HM-IN-3 1 1.3 0.002 L vs. C 0.014 L vs. C 

HM-IN-6 1 1.0 0.134  <.001 
L vs. C vs. 

R 

HM-IN-7 1 0.7 0.857  0.025 L vs. C 

HM-IN-8 1 1.3 0.019 L vs. C <.001 
L and R vs. 

C 

HM-IA-1 5 17.2 0.092  0.026 L vs. C 

HM-IA-2 15 119.7 0.082  0.081   

HM-IA-3 9 15.2 0.231  <.001 
L vs. C vs. 

R 

HM-IA-4 22 59.3 0.031 L vs. R 0.323   

HM-IA-5 15 37.7 0.908  0.005 
L and R vs. 

C 

HM-IA-6 15 25.1 0.128  0.042   

HM-IA-7 14 38.2 0.411  0.491  

HM-IA-8 11 36.7 0.063  0.018 
L and R vs. 

C 

HM-IA-9 24 32.8 0.027 R vs. C 0.002 
L and R vs. 

C 

HM-IA-10 17 153.7 0.395  <.001 
L and R vs. 

C 

HM-IA-11 10 35.9 0.134  0.892  

a
 p-value generated using ANOVA table, 

b
 locations statistically different based on the Bonferroni comparison of means method. 

As shown in Table 22 and in Figure 64 (for mean profile depth, MPD) and in 

Table 22 and Figure 65 (for dynamic friction, DF20), the frictional properties of the PFC, 

SMA and DGA sections are, in general, similarly sensitive to the transverse location.  

Based on the series of measurements, significant differences between friction measured at 

the center of the lane and either wheel path were observed in three cases for the SMA and 
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DGA sections and in two cases for the PFC section.  Most likely, this is the effect of 

unequal wear of the pavement surface due to the different intensity of traffic.  It is 

expected that most vehicles travel with their left and right wheels in the appropriate 

wheel path.  Under typical traffic conditions, the center of the lane would be exposed to 

tire traffic only during lane changing operations.  As a result, friction in the center of the 

lane location should be higher than in the left or right wheelpaths.  Significant differences 

between the macrotexture measured in the center of the lane and either wheelpath were 

observed in one case for the SMA and DGA sections and between the left and right 

wheelpaths in one case for the PFC and SMA sections.  Again, this is most likely related 

to the unequal number of wheel passes.  

Similar to the SMA, PFC and DGA sections, for the HM-IA and HM-IN sections 

the frictional properties also vary by transverse location, as shown in Figure 66 (for 

MPD), Figure 67  (for DF20) and in Table 23.  Again, friction in the center of the lane 

typically was the highest.  In addition, the macrotexture in the center of the lane was 

typically the lowest.   

It was observed that in all the HM-IN sections the DF20 values for the center of 

the lane were higher than those from the left or right wheelpaths, which was not always 

the case for the HM-IA sections.  Possibly this is related to differences in the pavement 

age and number of wheel passes over the sections. Note that all the HM-IN sections 

compared here were opened to the traffic one to two years before the tests were 

conducted while, on average, the HM-IA sections were about 14 years old.  
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It can also be noticed that the MPD values for the HM-IN sections were typically 

lower than for the HM-IA sections and different than those for the PFC and SMA 

sections.  Refer to the previous discussion in section 4.2.1.2 for further explanation.   

 

4.3. Comparison of Frictional Characteristics: Lab vs. Field  

During this study, a large group of specimens was tested in the laboratory and a 

relatively high amount of data was also collected from the field tests.  It was observed 

that for mixes from test Matrices I to III, in general, the macrotexture (MPD) of 

laboratory specimens, their dynamic friction (DF20) values and their wet pavement 

friction (F60) values were comparable to those obtained from field measurements (see 

Table 24).  It should be noted, however, that these values were obtained for specimens 

with different compositions than those tested in the field; more details regarding the 

compositions of the laboratory specimens are provided in Appendices D and E.  

Table 24. Comparison of the typical macrotexture (MPD), dynamic friction (DF20) and 

calibrated wet friction (F60) values obtained in the lab and during the field tests 

 MPD, mm DF20 F60 

Specimens from Matrices I-III, 

Laboratory Tests 
0.7-1.1

a, b
 0.3-0.5

 a, b
 0.2-0.4

 a, b
 

PFC, Laboratory Tests 2.4
a
 0.6

a
 0.4

a
 

SMA, Laboratory Tests 1.8
a
 0.7

a
 0.5

a
 

Typical Highways Sections 0.6-0.9 0.4-0.6 0.2-0.4 

PFC, Field Tests 1.4 0.6 0.4 

SMA, Field Tests 1.0 0.7 0.4 

a
 Values obtained for specimens after the initial phase of the polishing 

b
 Note the wide range of samples being tested (mixtures with fine, coarse and s-shaped gradation) 

 

The macrotexture of the laboratory compacted specimens was slightly higher than 

that observed in the field.  The air content measurements confirmed that the compaction 
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method adopted in the laboratory did not provide the same densification level as that 

obtained in the field.  Most likely, the slightly higher macrotexture of the laboratory 

specimens reflects their lower level of compaction.  

In addition to the mixtures from test Matrices I to III, the same PFC and SMA 

mixtures were also tested both in the laboratory and (periodically) in the field.  It was 

observed that laboratory tested SMA and PFC specimens showed higher MPD values 

than those tested in the field.  Again, most likely this discrepancy is the result of 

differences in the compaction efforts.  For specimens with “stiff” skeletons, such as SMA 

and PFC, the limitations of the laboratory adopted compaction method were reflected in 

higher values of MPD.  It is interesting to note, however, that for the PFC mixture the air 

content of the laboratory and field specimens was similar.  In the field, the PFC mixture 

required only one or two roller passes to seat the aggregates; apparently this level of 

compaction could be applied easily in the lab as well. 

Due to the insufficient amount of data, it was not possible to verify the proposed 

polishing model based on field tests.  However, the general trend of changes in the field-

determined F60 values corresponded well with the model predictions for the laboratory 

polished specimens. 
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CHAPTER FIVE: FINDINGS AND CONCLUSIONS 

 

 

 

During this study, the influence of mixture composition on the frictional 

properties of flexible (asphalt) pavements was investigated.  The research proved that it is 

possible to modify frictional properties of the pavement by changing the aggregate type 

and HMA composition.   

This study also found that increasing the friction aggregate (quartzite or steel slag) 

content substantially improved the polishing resistance of HMA mixes.  In general, mixes 

with steel slag generally exhibited slightly higher polishing resistance (lower polishing 

rate) than mixes with quartzite. 

The influence of the carbonate aggregate type (dolomite, limestone or soft 

limestone) on the frictional properties of mixes was also studied.  In general, the mixes 

with soft limestone exhibited lower friction values than those with dolomite and hard 

limestone.  The influence of the carbonate aggregate type, however, depended on other 

factors as well; for example, steel slag appeared to dominate the mixtures’ frictional 

performance (both polishing rate and terminal friction value) and overwhelmed the 

influence of the carbonate aggregate type. 

When the carbonate aggregates used in this study were blended with high friction 

aggregates (steel slag and quartzite), the overall friction level generally increased.  

Increasing the friction aggregate content from 10 to 20% had relatively little effect on the 

friction level, but friction increased dramatically when the friction aggregate content was 

increased to 40 or 70%.  If friction is to be improved only by adding high friction 
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aggregates to the local carbonate aggregates, the friction aggregate content should be 

20% or greater, depending on the amount of improvement needed.  There may be, 

however, other ways of increasing the overall surface friction. 

In general, mixes with 9.5 mm NMAS had a lower polishing rate than mixes with 

a 19 mm NMAS.  However, the overall frictional resistance of the 9.5 mm NMAS mixes 

was also lower than that of mixes with a 19 mm NMAS.  Therefore, larger NMAS sizes 

are desirable from a frictional point of view, and they should be used where other 

considerations (such as layer thickness and smoothness, among others) allow. 

The sensitivity analysis of friction/texture influence based on the theoretical 

relationship between macrotexture (expressed by mean profile depth (MPD)), 

microtexture (expressed by DF20) and International Friction Index parameters (F60 and 

Sp) shows that the IFI characteristics can be improved by increasing the pavement 

macrotexture, since the friction at high speed is mainly macrotexture dependent.  It was 

found in the field and laboratory part of this study that the value of the fineness modulus 

(FM) of the aggregate blend correlates well with the pavement macrotexture and thus has 

a great influence on the pavement frictional properties.  Moreover, the analysis confirmed 

that pavement frictional properties could be improved either by using highly polish 

resistant aggregate (such as quartzite or steel slag) blended with the locally available 

carbonate rocks or by combining both methods, such as blending both types of aggregates 

(low and high friction polishing resistant) and modifying the aggregate blend in such a 

way that the FM will be increased.  Mixes with FM values of 4.6 or higher generally had 

high macrotexture and friction levels. 
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During this study, the baseline values (for the laboratory tests) for the 

macrotexture (expressed by MPD), dynamic friction (DF20) and calibrated wet friction 

(F60) values for typical asphalt pavements were determined.  Based on the literature 

findings and field measurements using the ASTM E 274 towed friction trailer (equipped 

with both rib and smooth tires) and using the CTM/DFT devices, the approximate 

frictional flag value (F60) was determined.  This flag value (when determined using the 

CTM and DFT devices) was in the range of 0.17-0.20.  

The influence of the traffic volume on changes in the frictional properties of the 

pavement was also analyzed in this study.  It was confirmed that, when exposed to traffic, 

the friction values of new pavement initially increase, most likely due to wearing-off of 

the binder film from the surface of the aggregate particles.  After this initial increase, the 

values decrease and then stabilize at a lower level (terminal level).  Once the terminal 

level is reached, no further traffic-associated changes in the friction are observed.  

However, it was also confirmed that seasonal variations in temperature and precipitation 

may influence the frictional characteristics of the surface. 

In addition, it was confirmed that for many pavement sections, the left and right 

wheelpaths had lower friction than the center of the lane.  Most likely, this phenomenon 

is related to the unequal exposure of these areas to the tires of the passing vehicles.    

Comparison of the range of friction values obtained during the laboratory part of 

this study with results of the field measurements suggested good correlation between the 

laboratory measurements and actual highways conditions.  Similarly, measurements with 

different friction measuring devices showed the same trends in the data. 
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A new laboratory testing methodology was developed and refined during this 

study that allows for determination of two crucial properties for characterizing and 

predicting pavement friction: polishing rate and terminal friction value.  The use of the 

CTM and DFT to measure pavement texture and friction in both the laboratory and the 

field was shown to be a feasible approach to determining frictional characteristics.  When 

used in conjunction with the CTPM, the CTM and DFT can be used to detect changes in 

the surface properties of the mixtures under the effects of polishing.  In the future, a 

mixture approval procedure involving determination of the predicted polishing rate and 

terminal friction values for a given mixture could be used to evaluate the mixture 

frictional properties.   

Further work is needed to improve the compaction technique for laboratory slabs 

and to correlate the number of wheelpasses in the CPTM to actual traffic levels.  The 

proposed polishing model should be validated by testing more types of materials under 

actual field conditions; work has already begun on this effort under another research 

project involving extensive field testing. 
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CHAPTER SIX: RECOMMENDATIONS 

 

 

 

The focus of this study was on investigating frictional properties of selected group 

of hot mix asphalt (HMA) mixes and correlating these properties with the frictional 

aggregate type and content.  In order to accomplish this, suitable test methods needed to 

be identified or developed. 

Laboratory testing method and evaluation criteria were, therefore, developed in 

this study to allow for the accelerated estimation of the frictional properties of various 

HMA mixes consisting of different aggregate types and gradations.  It was found in this 

study that the Circular Track Machine (CTM) together with a Dynamic Friction Tester 

(DFT) can be used as a tool to assess the micro- and macrotexture of a mix and then to 

calculate the frictional properties (F60) of various pavement surfaces.  A Circular Track 

Polishing Machine (CTPM), refined in this study, may be used for the laboratory 

simulation of the polishing action of highway traffic.   

The test protocol developed in this study consists of preparing square slabs and 

determining their macrotexture (MPD) and dynamic friction (DF20) using the CTM and 

DFT at various stages of polishing in the CPTM.  Polishing should be continued until a 

steady level of friction is achieved (i.e., the measured texture and frictional properties 

remain reasonably constant while the specimen is subjected to additional polishing).  It 

was found that 55,000 revolutions of the polishing assembly (resulting in 165,000 passes 
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of the polishing wheels) should allow for the determination of the terminal friction level 

(F60@x1).   

The results of this study resulted in the development of a polishing model.  

Application of this model to the frictional properties allows for the determination of two 

crucial polishing parameters for a given mixture: a4 (polishing rate) and F60@x1 

(terminal friction level).  Frictional parameters of a mixture can then be assessed and the 

decision may be made whether the given mixture meets the desired friction criteria.  

An F60 flag value was estimated based on the current INDOT practice, 

measurements with CTM/DFT devices and a towed friction trailer as well as conclusions 

from the PIARC study [Wambold et al. 1996].  The friction trailer flag value (SN-based) 

in Indiana is equal to 20 for smooth tire tests conducted at 64 km/h.  The IFI-based 

friction flag value recommended in this study is F60=0.20.  While this value should be 

further verified, it can be used as a starting point for the lab evaluation of the frictional 

properties of various HMA mixtures.  Furthermore, it would be desired to determine the 

limit values which could potentially be used for the evaluation of mixture frictional 

properties under accelerated polishing, namely a4 (polishing rate) and F60@x1 (terminal 

friction level) parameters. 

A CTPM machine and test protocol developed in this study is a very promising 

test method to evaluate frictional properties of various HMAs, however, additional field 

verification of that method is needed.  As of now, a promising validation has been 

conducted for two mixtures (SMA and PFC) which were the subjects of long-term field 

monitoring and which were also tested in the laboratory using the proposed test protocol.  

For those mixtures, similarities in the trends of plots of F60-value vs. number of 
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wheelpasses were observed.  Some differences between the values of F60 determined 

under field and lab conditions were found, however.  Similar observations also apply to 

the MPD values in the sense that although the plots of MPD vs. number of wheelpasses 

were similar for both lab and field cases, there were some differences in the actual 

numerical values of the MPD.  It is believed that those differences are mainly caused by 

the limitations of the existing laboratory specimen compaction method, which does not 

densify the material to the same extent as occurs in the field.  It is recognized that the 

compaction method should be further improved so it more closely simulates field 

construction processes.  It has to be mentioned, however, that those differences in 

macrotexture are of secondary importance if only the relative changes in the micro- and 

macrotexture occurring during polishing under field and lab conditions are compared.  

The previously mentioned a4 and F60@x1 parameters developed in this study should 

serve work well for such relative comparisons and evaluations.  Relative comparisons 

could be used, for example, to compare a selected standard mix to new, untried mixture 

compositions or aggregate blends.  

Regarding the main objective of this study, it was confirmed here that pavement 

frictional properties can be improved either by using highly polish resistant aggregate 

blended with the locally available carbonate rocks or by increasing the macrotexture of 

the surface layer.  The best approach would be to combine both methods, such as 

blending both types of aggregates (low and high friction polishing resistant) and also 

modifying the aggregate blend in such a way that the macrotexture and fineness modulus 

(FM) are increased (by using appropriate aggregate gradations and maximum aggregate 

sizes). 
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Based on the test results obtained in this study, it can be concluded that the use of 

up to 20% of polish susceptible coarse aggregate (in the overall aggregate blend) does not 

negatively affect the frictional properties of the HMA.  On the other hand, if the use of an 

aggregate blend consisting mostly of polish susceptible aggregates is desired, the high 

friction coarse aggregate content should be 20% or greater in the overall aggregate blend, 

depending on the amount of improvement needed, mixture type (fine, s-shaped or coarse) 

and nominal maximum aggregate size used.  This finding should be further verified by 

performing field friction measurements of pavements with varying percentages of 

polishing aggregates. 

Both steel slag and quartzite were found to improve the frictional characteristics 

of HMA mixes in which they are used.  The choice of which high friction aggregate to 

use should be used based on availability and cost. 

In addition to substituting high friction aggregates for a portion of the polish 

susceptible aggregates, however, this study showed that the frictional characteristics of 

the surface can also be improved by changing the value of the fineness modulus (FM) of 

the surface mix.  The fineness modulus (FM) of the aggregate blend highly influences the 

pavement macrotexture (together with the compaction method and compaction effort, 

HMA temperature, etc.).  Since the pavement frictional properties, especially at the high 

speeds (above about 50 km/h) are closely related to the pavement macrotexture, changing 

the FM should allow for improvement of the frictional properties of mixtures for which 

the aggregate type may not be favorable (high amount of the polishable aggregate type).  

Based on the limited field observation, in general, HMA blends with a FM of about 4.6 or 

greater should provide a relatively “deep” pavement macrotexture (MPD above about 0.6 
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mm).  Such a texture improves wet weather friction by helping to evacuate water that 

may potentially lead to hydroplaning and helping to reduce braking distance.  In general, 

the s-shaped gradation resulted in higher MPD (“deeper” texture) and thus improved 

friction at high speeds. 

 One other way to increase the macrotexture of the surface is to use aggregates 

with larger NMAS sizes.  Such mixtures are desirable from a frictional point of view and 

should be used where other considerations (such as tire pavement/noise, layer thickness 

and smoothness, among others) allow. 
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Appendix A: Laboratory Friction, Texture and Polishing Methods 

Table A 1. Comparison of laboratory friction measurement methods [after McDaniel and Coree 2003]. 

Devices for the testing and evaluation of the surface friction of aggregates and mixes  

Device About 

Device 

Properties Strengths Weaknesses Specs/used 

by 

British 

Pendulum 

Tester 

Pendulum 

arm 

Evaluates the amount of 

Kinetic Energy lost 

when a rubber slider 

attached to the pendulum 

arm is propelled over the 

test surface 

Portable. Very simple. 

Widely used. 

Variable quality of results. 

Cumbersome and sometimes 

ineffective calibration. 

Pendulum only allows for a 

small area to be tested. 

ASTM 

E303 

Michigan 

Laboratory 

Friction Tester 

Rotating 

Wheel 

One wheel is brought to 

a speed of 40 mph and 

dropped onto the surface 

of the sample. Torque 

measurement is recorded 

before wheel stops 

Good measure of the 

tire/surface interaction. 

Similar to towed 

friction trailer. 

Poor measurement of pavement 

macrotexture. History of use on 

aggregate only. 

MDOT 

Dynamic 

Friction Tester 

Rotating 

slide 

Measures the coefficient 

of friction 

Laboratory or field 

measurements of 

microtexture 

N/A ASTM 

E1911 

North Carolina 

Variable Speed 

Friction Tester 

Pendulum 

Type 

Testing 

Device 

Pendulum with locked 

wheel smooth rubber tire 

at its lower end 

Can simulate different 

vehicle speeds 

Uneven pavement surfaces in 

the field may provide inaccurate 

results 

ASTM 

 E707 

PTI Friction 

Tester 

Rubber 

slider 

Rubber slider is 

propelled linearly along 

surface by falling weight 

Tests in linear 

direction 

Companion to Penn State 

Reciprocating Polisher. Fallen 

into disuse. 

Formerly by 

PTI 
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Table A 2. Comparison of portable texture measurement methods [after  McDaniel and Coree 2003]. 

Devices for the evaluation of the surface texture of mixes 

Device About device Properties Strengths Weaknesses Specs/used 

by 

Sand Patch Sand spread over 

circular area to 

fill surface voids 

Measures mean texture 

depth over covered area 

Simple Cumbersome. Poor 

repeatability. Average depth 

only. 

ASTM E965 

Grease Patch Grease spread 

over surface 

Measures mean texture 

depth over covered area 

Simple Cumbersome. Poor 

repeatability. Average depth 

only. Not widely used. 

NASA 

Silicone 

Putty 

Method 

Silicone putty 

pressed onto 

surface 

Measures mean texture 

depth over covered area 

Simple Cumbersome. Poor 

repeatability. Average depth 

only. Not widely used. 

TTI 

Outflow 

Meter 

Water flows 

from cylinder 

through surface 

voids 

Estimates average texture Simple. Quick. For non-porous surfaces 

only. 

FHWA 

Dromometer Stylus traces 

surface 

Lowers a tracing pin, that 

creates a profile of the 

specimen surface 

Can measure 

both micro and 

macro texture 

Can only be used on small 

areas of pavement 

Ref. 

[Augustin 

1990] 

Surtronix 3+ 

Profilometer 

Stylus traces 

profiles 

Horiz Res = 1 micrometer 

Vert Res = 0.001 micrometer 

Traverse Length = 25.4 mm 

Can read micro 

and macrotexture 

Can only be used on small 

areas of pavement 

Ref. 

[Gunaratne 

2000] 

Circular 

Track Meter 

Laser based Laser mounted on an arm 

that rotates on a 

circumference of 142 mm 

and measures the texture 

Used with DFT 

can calculate IFI. 

Fast. Portable. 

Repeatable. 

Measures small area. 

Relatively new. 

ASTM 

E2157 
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Table A 3. Comparison of accelerated polishing methods [after  McDaniel and Coree 2003]. 

Devices for the accelerated polishing of aggregates and mixes 

Device About 

device 

Properties Strengths Weaknesses Specs/used 

by 

British 

Polishing 

Wheel 

Wheel for 

polishing 

away 

macro-

texture 

Curved aggregates 

specimens polished by a 

rotating wheel. 

Accelerated polishing 

for lab testing. Bench 

sized. 

Coarse aggregate coupons only. 

Does not affect macrotexture or 

mix properties 

ASTM 

 D3319 

Michigan 

Indoor Wear 

Track 

Large 

circular 

track 

Wheels centered around 

pivot point, move in 

circle around track 

Close to real world. Track is very large and 

cumbersome. Time consuming 

sample preparation. Used for 

aggregate only. 

MDOT 

NCSU 

Polishing 

Machine 

4 wheels 

rotate 

around 

central 

pivot 

Four pneumatic tires are 

adjusted for camber and 

toe-out to provide 

scrubbing action for 

polishing 

No need for water or 

grinding compounds, 

can polish aggregate or 

mixes 

Polishes a relatively small area 

or few number of samples 

ASTM E660 

NCAT 

Polishing 

Machine 

3 wheels 

rotate 

around 

central 

pivot 

Three pneumatic tires 

are adjusted for camber 

and toe-out to provide 

scrubbing action for 

polishing 

Sized to match DFT 

and CTM. 

New device developed by 

NCAT based on older devices. 

NCAT 

Penn State 

Reciprocating 

Polishing 

Machine 

Recipro-

cating pad 

Reciprocates rubber pad 

under pressure against 

specimen surface while 

slurry of water and 

abrasive is fed to 

surface. 

Portable. Can be used 

to polish aggregate or 

mix in lab or field. 

Polishes a relatively small area. 

Oscillation obliterates 

directional polishing. Fallen 

into disuse. 

ASTM 

 E1393 
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Appendix B: Representation of the Laboratory and Field Specimens 

Figures in the following 11 pages are presented in the subsequent order:  

Figure B 1. Laboratory mixture 95SS20C_D: before and after the polishing 

Figure B 2. Laboratory mixture 95SS20F_D: before and after the polishing 

Figure B 3. Laboratory mixture 95SS20S_D: before and after the polishing 

Figure B 4. Laboratory mixture 19SS20C_D: before and after the polishing 

Figure B 5. Laboratory mixture 19SS20F_D: before and after the polishing 

Figure B 6. Laboratory mixture 19SS20S_D: before and after the polishing 

Figure B 7. Laboratory sample of SMA (slab 38 mm thick): before and after the polishing 

Figure B 8. Laboratory sample of PFC (slab 38 mm thick): before and after the polishing 

Figure B 9. HMA sections (interstate highway) tested periodically: (a) PFC and (b) SMA 

Figure B 10. HMA sections tested periodically: (a) INDOT Test Track (HMA-TT) and 

(b) state highway (DGA) 

Figure B 11. Concrete pavement sections located in the INDOT Test Track: (a) tined 

(TC) and (b) smooth (SC) 

 

Note, that some pictures were taken with the flash while for the rest only ambient light 

was used.  This influenced the picture brightness and contrast. 
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Figure B 1. Laboratory mixture 

95SS20C_D: before and after the polishing 
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Figure B 2. Laboratory mixture 

95SS20F_D: before and after the polishing 
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Before Polishing 
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Figure B 3. Laboratory mixture 

95SS20S_D: before and after the polishing  
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Figure B 4. Laboratory mixture 

19SS20C_D: before and after the polishing 
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Figure B 5. Laboratory mixture 

19SS20F_D: before and after the polishing 
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Before Polishing 

19SS20F_D 
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Figure B 6. Laboratory mixture 

19SS20S_D: before and after the polishing 
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Before Polishing 
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Figure B 7. Laboratory sample of SMA 

(slab 38 mm thick): before and after the 

polishing 
0 15  cm 5 10 

After Polishing 

0 15  cm 5 10 

Before Polishing 

SMA_38 mm 
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Figure B 8. Laboratory sample of PFC (slab 

38 mm thick): before and after the 

polishing 
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0 15  cm 5 10 

Before Polishing 

PFC 38 mm 



 

 

197 

 

 

 

 

 

 

 

 

Figure B 9. HMA sections (interstate 

highway) tested periodically: (a) PFC and 

(b) SMA 
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Figure B 10. HMA sections tested 

periodically: (a) INDOT Test Track (HMA-

TT) and (b) state highway (DGA) 
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Figure B 11. Concrete pavement sections 

located in the INDOT Test Track: (a) tined 

(TC) and (b) smooth (SC) 
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Appendix C: Summary of Mixture Design  

This appendix contains a summary of the mixture design data.  Data for mixes tested in 

the laboratory is shown in Table C 1 in the following order: mix number (No.), the mix 

label, mixture maximum theoretical specific gravity (Gmm), aggregate blend specific 

gravity (Gsb), percent of voids in the mineral aggregate (VMA), percent of voids filled 

with asphalt (VFA) and dust to binder ratio (P0.075/Pbe).  The mix label includes the the 

mixture nominal maximum aggregate size (NMAS, mm), friction aggregate type (FAT), 

friction aggregate content (FAC), aggregate gradation type (G) and common aggregate 

type (CAT), 

 

Plant produced mixes tested in the lab (PFC and SMA) are identified by the mix type; for 

those two mixtures only Gmm and Gsb values are reported. 
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Table C 1. Summary of the mixture design properties 

No. Mix Label Gmm Gsb VMA VFA P0.075/Pbe 

1 19 Q 20 C D 2.54 2.66 12.8 68.8 0.7 

2 19 Q 20 C HL 2.49 2.64 13.8 71.0 0.7 

3 19 Q 20 C SL 2.44 2.54 12.2 67.2 0.8 

4 19 Q 20 F D 2.57 2.68 11.6 65.6 2.2 

5 19 Q 20 F HL 2.55 2.66 11.9 66.3 2.1 

6 19 Q 20 F SL 2.52 2.61 10.7 62.7 2.5 

7 19 Q 20 S D 2.51 2.66 14.3 72.0 0.6 

8 19 Q 20 S HL 2.49 2.64 14.3 72.0 0.6 

9 19 Q 20 S SL 2.43 2.54 12.9 69.1 0.7 

10 19 SS 20 C D 2.69 2.82 12.3 67.6 0.9 

11 19 SS 20 C HL 2.68 2.79 11.8 66.0 1.0 

12 19 SS 20 C SL 2.61 2.68 10.7 62.6 1.1 

13 19 SS 20 F D 2.69 2.84 12.8 68.8 2.0 

14 19 SS 20 F HL 2.69 2.82 12.3 67.4 2.2 

15 19 SS 20 F SL 2.64 2.75 11.9 66.3 2.2 

16 19 SS 20 S D 2.65 2.82 14.6 72.6 0.7 

17 19 SS 20 S HL 2.61 2.79 14.9 73.2 0.7 

18 19 SS 20 S SL 2.55 2.68 13.5 70.3 0.7 

19 95 Q 20 C D 2.50 2.66 15.1 73.5 0.6 

20 95 Q 20 C HL 2.46 2.63 15.6 74.3 0.6 

21 95 Q 20 C SL 2.42 2.55 14.2 71.8 0.7 

22 95 Q 20 F D 2.54 2.69 13.6 70.6 2.2 

23 95 Q 20 F HL 2.52 2.68 13.9 71.2 2.2 

24 95 Q 20 F SL 2.51 2.64 13.1 69.6 3.8 

25 95 Q 20 S D 2.47 2.66 16.9 76.4 0.5 

26 95 Q 20 S HL 2.46 2.63 16.6 75.9 0.6 

27 95 Q 20 S SL 2.42 2.55 15.4 74.0 0.4 

28 95 SS 20 C D 2.65 2.81 14.6 72.6 0.7 

29 95 SS 20 C HL 2.60 2.78 15.3 73.8 0.7 

30 95 SS 20 C SL 2.61 2.69 12.3 67.4 0.9 

31 95 SS 20 F D 2.66 2.84 15.2 73.6 2.0 

32 95 SS 20 F HL 2.66 2.83 14.7 72.9 2.1 
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No. Mix Label Gmm Gsb VMA SL P0.075/Pbe 

33 95 SS 20 F SL 2.65 2.80 14.0 71.5 2.3 

34 95 SS 20 S D 2.58 2.81 17.9 77.7 0.5 

35 95 SS 20 S HL 2.56 2.78 18.1 77.8 0.6 

36 95 SS 20 S SL 2.53 2.69 16.1 75.2 0.6 

37 95 SS 0 S D 2.45 2.67 17.9 77.7 0.5 

38 95 SS 10 S D 2.52 2.74 18.1 77.9 0.5 

39 95 SS 40 S D 2.71 2.97 18.2 78.1 0.6 

40 95 SS 70 S D 2.89 3.25 19.7 79.7 0.5 

41 95 Q 10 S D 2.45 2.66 18.0 77.7 0.5 

42 95 Q 40 S D 2.43 2.65 17.9 77.7 0.5 

43 95 Q 70 S D 2.41 2.63 18.1 77.9 0.5 

44 95 SS 10 C D 2.56 2.74 15.6 74.4 0.6 

45 95 SS 10 C SL 2.53 2.71 14.3 72.0 0.7 

46 95 SS 10 C HL 2.47 2.60 15.7 74.5 0.7 

47 PFC 3.19 3.57    

48 PFC 3.19 3.57    

49 SMA 3.15 3.57    

50 SMA 3.15 3.57    

Note: Only one plant produced mixture of PFC (no. 47 and 48) and SMA (no. 49 and 50) was used in the 

laboratory part of this study.   
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 Appendix D: Laboratory Polishing Data 

This appendix contains a complete summary of the laboratory polishing data.  Data are 

presented in Table D 1 in groups separately for each tested specimen.  Data are presented 

in the following order: sample number (No.), mix label, measurement repetition number 

(R), number of wheel passes (#) corresponding to the time at which the measurement was 

conducted, dynamic friction value (DF20), mean profile depth (MPD, mm) and calibrated 

wet friction (F60) value.  Note that the F60 value was calculated based on the average 

MPD and DF20 data at a given number of wheel passes.  As before, the mix label includes 

mixture nominal maximum aggregate size (NMAS, mm), friction aggregate type (FAT), 

friction aggregate content (FAC), aggregate gradation type (G), and common aggregate 

type (CAT).   

 

Samples of the plant produced mixes tested in the lab (PFC and SMA) are identified by 

the mix type and sample height (in mm). 
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Table D 1. Laboratory polishing data  

No Mix Label R # MPD DF20 F6

0 

 No Mix Label R # MPD DF20 F6

0 1 19 Q 2

0 
C D 1 0000 2.08 0.74 0.5

2 
 2 19 Q 2

0 
C H

L 
1 0000 1.19 0.63 0.4

3 1 19 Q 2

0 
C D 2 0000 2.05 0.72 0.5

2 
 2 19 Q 2

0 
C H

L 
2 0000 1.32 0.68 0.4

3 1 19 Q 2

0 
C D 1 0015 2.40 0.82 0.5

7 
 2 19 Q 2

0 
C H

L 
1 0015 1.33 0.79 0.5

0 1 19 Q 2

0 
C D 2 0015 2.42 0.77 0.5

7 
 2 19 Q 2

0 
C H

L 
2 0015 1.23 0.76 0.5

0 1 19 Q 2

0 
C D 1 0036 2.38 0.71 0.5

1 
 2 19 Q 2

0 
C H

L 
1 0036 1.33 0.72 0.4

6 1 19 Q 2

0 
C D 2 0036 2.30 0.68 0.5

1 
 2 19 Q 2

0 
C H

L 
2 0036 1.23 0.70 0.4

6 1 19 Q 2

0 
C D 1 0090 2.40 0.65 0.4

7 
 2 19 Q 2

0 
C H

L 
1 0090 1.24 0.68 0.4

3 1 19 Q 2

0 
C D 2 0090 2.38 0.63 0.4

7 
 2 19 Q 2

0 
C H

L 
2 0090 1.25 0.65 0.4

3 1 19 Q 2

0 
C D 1 0180 2.33 0.62 0.4

5 
 2 19 Q 2

0 
C H

L 
1 0180 1.30 0.56 0.3

9 1 19 Q 2

0 
C D 2 0180 2.30 0.59 0.4

5 
 2 19 Q 2

0 
C H

L 
2 0180 1.27 0.57 0.3

9 1 19 Q 2

0 
C D 1 0300 2.39 0.56 0.4

2 
 2 19 Q 2

0 
C H

L 
1 0300 1.31 0.58 0.3

9 1 19 Q 2

0 
C D 2 0300 2.31 0.56 0.4

2 
 2 19 Q 2

0 
C H

L 
2 0300 1.37 0.56 0.3

9 1 19 Q 2

0 
C D 1 0450 2.23 0.54 0.4

0 
 2 19 Q 2

0 
C H

L 
1 0450 1.43 0.56 0.3

8 1 19 Q 2

0 
C D 2 0450 2.22 0.52 0.4

0 
 2 19 Q 2

0 
C H

L 
2 0450 1.45 0.53 0.3

8 1 19 Q 2

0 
C D 1 0750 2.22 0.49 0.3

7 
 2 19 Q 2

0 
C H

L 
1 0750 1.37 0.50 0.3

5 1 19 Q 2

0 
C D 2 0750 2.32 0.46 0.3

7 
 2 19 Q 2

0 
C H

L 
2 0750 1.38 0.50 0.3

5 1 19 Q 2

0 
C D 1 1200 2.32 0.42 0.3

3 
 2 19 Q 2

0 
C H

L 
1 1200 1.39 0.48 0.3

4 1 19 Q 2

0 
C D 2 1200 2.35 0.41 0.3

3 
 2 19 Q 2

0 
C H

L 
2 1200 1.39 0.48 0.3

4 1 19 Q 2

0 
C D 1 1650 2.24 0.40 0.3

2 
 2 19 Q 2

0 
C H

L 
1 1650 1.35 0.42 0.3

1 1 19 Q 2

0 
C D 2 1650 2.28 0.40 0.3

2 
 2 19 Q 2

0 
C H

L 
2 1650 1.37 0.41 0.3

1                        
3 19 Q 2

0 
C S

L 
1 0000 1.73 0.69 0.4

8 
 4 19 Q 2

0 
F D 1 0000 0.91 0.81 0.4

6 
3 19 Q 2

0 
C S

L 
2 0000 1.73 0.71 0.4

8 
 4 19 Q 2

0 
F D 2 0000 0.93 0.75 0.4

6 
3 19 Q 2

0 
C S

L 
1 0015 1.76 0.63 0.4

4 
 4 19 Q 2

0 
F D 1 0015 1.18 0.79 0.4

9 
3 19 Q 2

0 
C S

L 
2 0015 1.75 0.62 0.4

4 
 4 19 Q 2

0 
F D 2 0015 1.18 0.75 0.4

9 
3 19 Q 2

0 
C S

L 
1 0036 1.63 0.63 0.4

3 
 4 19 Q 2

0 
F D 1 0036 1.28 0.73 0.4

6 
3 19 Q 2

0 
C S

L 
2 0036 1.59 0.61 0.4

3 
 4 19 Q 2

0 
F D 2 0036 1.21 0.70 0.4

6 
3 19 Q 2

0 
C S

L 
1 0090 1.73 0.59 0.4

2 
 4 19 Q 2

0 
F D 1 0090 1.30 0.67 0.4

3 
3 19 Q 2

0 
C S

L 
2 0090 1.73 0.57 0.4

2 
 4 19 Q 2

0 
F D 2 0090 1.28 0.65 0.4

3 
3 19 Q 2

0 
C S

L 
1 0180 1.67 0.54 0.3

8 
 4 19 Q 2

0 
F D 1 0180 1.39 0.64 0.4

3 
3 19 Q 2

0 
C S

L 
2 0180 1.74 0.51 0.3

8 
 4 19 Q 2

0 
F D 2 0180 1.39 0.62 0.4

3 
3 19 Q 2

0 
C S

L 
1 0300 1.72 0.52 0.3

8 
 4 19 Q 2

0 
F D 1 0300 1.46 0.59 0.4

1 
3 19 Q 2

0 
C S

L 
2 0300 1.75 0.52 0.3

8 
 4 19 Q 2

0 
F D 2 0300 1.48 0.58 0.4

1 
3 19 Q 2

0 
C S

L 
1 0450 1.84 0.51 0.3

8 
 4 19 Q 2

0 
F D 1 0450 1.71 0.53 0.3

9 
3 19 Q 2

0 
C S

L 
2 0450 1.86 0.50 0.3

8 
 4 19 Q 2

0 
F D 2 0450 1.68 0.54 0.3

9 
3 19 Q 2

0 
C S

L 
1 0750 1.82 0.49 0.3

6 
 4 19 Q 2

0 
F D 1 0750 1.58 0.50 0.3

6 
3 19 Q 2

0 
C S

L 
2 0750 1.85 0.48 0.3

6 
 4 19 Q 2

0 
F D 2 0750 1.59 0.49 0.3

6 
3 19 Q 2

0 
C S

L 
1 1200 1.77 0.31 0.2

6 
 4 19 Q 2

0 
F D 1 1200 1.59 0.47 0.3

5 
3 19 Q 2

0 
C S

L 
2 1200 1.73 0.31 0.2

6 
 4 19 Q 2

0 
F D 2 1200 1.59 0.47 0.3

5 
3 19 Q 2

0 
C S

L 
1 1650 1.82 0.30 0.2

6 
 4 19 Q 2

0 
F D 1 1650 1.62 0.43 0.3

3 
3 19 Q 2

0 
C S

L 
2 1650 1.89 0.31 0.2

6 
 4 19 Q 2

0 
F D 2 1650 1.61 0.43 0.3

3 
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No Mix Label R # MPD DF20 F6

0 

 No Mix Label R # MPD DF20 F6

0 5 19 Q 2

0 
F H

L 
1 0000 0.65 0.79 0.4

0 
 6 19 Q 2

0 
F S

L 
1 0000 0.69 0.85 0.4

3 
5 19 Q 2

0 
F H

L 
2 0000 0.67 0.71 0.4

0 
 6 19 Q 2

0 
F S

L 
2 0000 0.69 0.74 0.4

3 
5 19 Q 2

0 
F H

L 
1 0015 0.90 0.78 0.4

4 
 6 19 Q 2

0 
F S

L 
1 0015 1.10 0.64 0.4

1 
5 19 Q 2

0 
F H

L 
2 0015 0.89 0.73 0.4

4 
 6 19 Q 2

0 
F S

L 
2 0015 1.08 0.62 0.4

1 
5 19 Q 2

0 
F H

L 
1 0036 1.09 0.71 0.4

4 
 6 19 Q 2

0 
F S

L 
1 0036 1.20 0.61 0.4

0 
5 19 Q 2

0 
F H

L 
2 0036 1.08 0.68 0.4

4 
 6 19 Q 2

0 
F S

L 
2 0036 1.19 0.60 0.4

0 
5 19 Q 2

0 
F H

L 
1 0090 1.08 0.64 0.4

0 
 6 19 Q 2

0 
F S

L 
1 0090 1.27 0.59 0.3

9 
5 19 Q 2

0 
F H

L 
2 0090 1.08 0.62 0.4

0 
 6 19 Q 2

0 
F S

L 
2 0090 1.33 0.56 0.3

9 
5 19 Q 2

0 
F H

L 
1 0180 1.24 0.60 0.3

9 
 6 19 Q 2

0 
F S

L 
1 0180 1.47 0.54 0.3

7 
5 19 Q 2

0 
F H

L 
2 0180 1.20 0.58 0.3

9 
 6 19 Q 2

0 
F S

L 
2 0180 1.46 0.52 0.3

7 
5 19 Q 2

0 
F H

L 
1 0300 1.31 0.54 0.3

7 
 6 19 Q 2

0 
F S

L 
1 0300 1.41 0.48 0.3

4 
5 19 Q 2

0 
F H

L 
2 0300 1.31 0.52 0.3

7 
 6 19 Q 2

0 
F S

L 
2 0300 1.40 0.47 0.3

4 
5 19 Q 2

0 
F H

L 
1 0450 1.27 0.52 0.3

5 
 6 19 Q 2

0 
F S

L 
1 0450 1.51 0.44 0.3

3 
5 19 Q 2

0 
F H

L 
2 0450 1.30 0.50 0.3

5 
 6 19 Q 2

0 
F S

L 
2 0450 1.51 0.44 0.3

3 
5 19 Q 2

0 
F H

L 
1 0750 1.34 0.45 0.3

2 
 6 19 Q 2

0 
F S

L 
1 0750 1.52 0.39 0.3

0 
5 19 Q 2

0 
F H

L 
2 0750 1.30 0.44 0.3

2 
 6 19 Q 2

0 
F S

L 
2 0750 1.51 0.39 0.3

0 
5 19 Q 2

0 
F H

L 
1 1200 1.32 0.40 0.2

9 
 6 19 Q 2

0 
F S

L 
1 1200 1.47 0.38 0.2

9 
5 19 Q 2

0 
F H

L 
2 1200 1.31 0.39 0.2

9 
 6 19 Q 2

0 
F S

L 
2 1200 1.45 0.38 0.2

9 
5 19 Q 2

0 
F H

L 
1 1650 1.27 0.39 0.2

9 
 6 19 Q 2

0 
F S

L 
1 1650 1.42 0.36 0.2

8 
5 19 Q 2

0 
F H

L 
2 1650 1.30 0.38 0.2

9 
 6 19 Q 2

0 
F S

L 
2 1650 1.40 0.35 0.2

8                        
7 19 Q 2

0 
S D 1 0000 1.34 0.67 0.4

4 
 8 19 Q 2

0 
S H

L 
1 0000 1.32 0.66 0.4

3 
7 19 Q 2

0 
S D 2 0000 1.38 0.63 0.4

4 
 8 19 Q 2

0 
S H

L 
2 0000 1.30 0.65 0.4

3 
7 19 Q 2

0 
S D 1 0015 1.37 0.82 0.5

2 
 8 19 Q 2

0 
S H

L 
1 0015 1.41 0.75 0.4

8 
7 19 Q 2

0 
S D 2 0015 1.41 0.78 0.5

2 
 8 19 Q 2

0 
S H

L 
2 0015 1.45 0.70 0.4

8 
7 19 Q 2

0 
S D 1 0036 1.37 0.75 0.4

8 
 8 19 Q 2

0 
S H

L 
1 0036 1.30 0.65 0.4

3 
7 19 Q 2

0 
S D 2 0036 1.40 0.72 0.4

8 
 8 19 Q 2

0 
S H

L 
2 0036 1.28 0.63 0.4

3 
7 19 Q 2

0 
S D 1 0090 1.41 0.68 0.4

5 
 8 19 Q 2

0 
S H

L 
1 0090 1.32 0.64 0.4

2 
7 19 Q 2

0 
S D 2 0090 1.35 0.67 0.4

5 
 8 19 Q 2

0 
S H

L 
2 0090 1.37 0.62 0.4

2 
7 19 Q 2

0 
S D 1 0180 1.28 0.61 0.4

1 
 8 19 Q 2

0 
S H

L 
1 0180 1.34 0.52 0.3

6 
7 19 Q 2

0 
S D 2 0180 1.32 0.60 0.4

1 
 8 19 Q 2

0 
S H

L 
2 0180 1.34 0.50 0.3

6 
7 19 Q 2

0 
S D 1 0300 1.38 0.57 0.3

9 
 8 19 Q 2

0 
S H

L 
1 0300 1.31 0.47 0.3

3 
7 19 Q 2

0 
S D 2 0300 1.37 0.56 0.3

9 
 8 19 Q 2

0 
S H

L 
2 0300 1.25 0.45 0.3

3 
7 19 Q 2

0 
S D 1 0450 1.41 0.55 0.3

8 
 8 19 Q 2

0 
S H

L 
1 0450 1.34 0.45 0.3

2 
7 19 Q 2

0 
S D 2 0450 1.47 0.53 0.3

8 
 8 19 Q 2

0 
S H

L 
2 0450 1.32 0.45 0.3

2 
7 19 Q 2

0 
S D 1 0750 1.46 0.53 0.3

7 
 8 19 Q 2

0 
S H

L 
1 0750 1.34 0.41 0.3

0 
7 19 Q 2

0 
S D 2 0750 1.48 0.52 0.3

7 
 8 19 Q 2

0 
S H

L 
2 0750 1.32 0.40 0.3

0 
7 19 Q 2

0 
S D 1 1200 1.45 0.48 0.3

5 
 8 19 Q 2

0 
S H

L 
1 1200 1.39 0.34 0.2

7 
7 19 Q 2

0 
S D 2 1200 1.42 0.48 0.3

5 
 8 19 Q 2

0 
S H

L 
2 1200 1.35 0.34 0.2

7 
7 19 Q 2

0 
S D 1 1650 1.55 0.44 0.3

3 
 8 19 Q 2

0 
S H

L 
1 1650 1.32 0.34 0.2

6 
7 19 Q 2

0 
S D 2 1650 1.49 0.43 0.3

3 
 8 19 Q 2

0 
S H

L 
2 1650 1.33 0.34 0.2

6  



 

 

206 

No Mix Label R # MPD DF20 F6

0 

 No Mix Label R # MPD DF20 F6

0 9 19 Q 2

0 
S S

L 
1 0000 1.53 0.67 0.4

5 
 10 19 S

S 

2

0 
C D 1 0000 1.58 0.70 0.4

6 
9 19 Q 2

0 
S S

L 
2 0000 1.47 0.66 0.4

5 
 10 19 S

S 

2

0 
C D 2 0000 1.64 0.65 0.4

6 
9 19 Q 2

0 
S S

L 
1 0015 1.49 0.78 0.5

1 
 10 19 S

S 

2

0 
C D 1 0015 1.61 0.73 0.4

9 
9 19 Q 2

0 
S S

L 
2 0015 1.46 0.76 0.5

1 
 10 19 S

S 

2

0 
C D 2 0015 1.61 0.69 0.4

9 
9 19 Q 2

0 
S S

L 
1 0036 1.38 0.66 0.4

4 
 10 19 S

S 

2

0 
C D 1 0036 1.65 0.66 0.4

5 
9 19 Q 2

0 
S S

L 
2 0036 1.46 0.64 0.4

4 
 10 19 S

S 

2

0 
C D 2 0036 1.68 0.63 0.4

5 
9 19 Q 2

0 
S S

L 
1 0090 1.44 0.62 0.4

1 
 10 19 S

S 

2

0 
C D 1 0090 1.63 0.63 0.4

4 
9 19 Q 2

0 
S S

L 
2 0090 1.46 0.58 0.4

1 
 10 19 S

S 

2

0 
C D 2 0090 1.70 0.61 0.4

4 
9 19 Q 2

0 
S S

L 
1 0180 1.49 0.60 0.4

1 
 10 19 S

S 

2

0 
C D 1 0180 1.67 0.58 0.4

1 
9 19 Q 2

0 
S S

L 
2 0180 1.45 0.59 0.4

1 
 10 19 S

S 

2

0 
C D 2 0180 1.66 0.55 0.4

1 
9 19 Q 2

0 
S S

L 
1 0300 1.44 0.55 0.3

8 
 10 19 S

S 

2

0 
C D 1 0300 1.66 0.52 0.3

8 
9 19 Q 2

0 
S S

L 
2 0300 1.50 0.53 0.3

8 
 10 19 S

S 

2

0 
C D 2 0300 1.66 0.51 0.3

8 
9 19 Q 2

0 
S S

L 
1 0450 1.45 0.55 0.3

8 
 10 19 S

S 

2

0 
C D 1 0450 1.71 0.49 0.3

6 
9 19 Q 2

0 
S S

L 
2 0450 1.41 0.53 0.3

8 
 10 19 S

S 

2

0 
C D 2 0450 1.74 0.47 0.3

6 
9 19 Q 2

0 
S S

L 
1 0750 1.58 0.48 0.3

5 
 10 19 S

S 

2

0 
C D 1 0750 1.67 0.42 0.3

2 
9 19 Q 2

0 
S S

L 
2 0750 1.58 0.49 0.3

5 
 10 19 S

S 

2

0 
C D 2 0750 1.61 0.41 0.3

2 
9 19 Q 2

0 
S S

L 
1 1200 1.54 0.38 0.3

0 
 10 19 S

S 

2

0 
C D 1 1200 1.74 0.41 0.3

1 
9 19 Q 2

0 
S S

L 
2 1200 1.54 0.40 0.3

0 
 10 19 S

S 

2

0 
C D 2 1200 1.78 0.39 0.3

1 
9 19 Q 2

0 
S S

L 
1 1650 1.57 0.32 0.2

6 
 10 19 S

S 

2

0 
C D 1 1650 1.74 0.36 0.2

9 
9 19 Q 2

0 
S S

L 
2 1650 1.59 0.32 0.2

6 
 10 19 S

S 

2

0 
C D 2 1650 1.77 0.36 0.2

9                        
11 19 S

S 

2

0 
C H

L 
1 0000 1.84 0.63 0.4

4 
 12 19 S

S 

2

0 
C S

L 
1 0000 1.36 0.80 0.4

9 
11 19 S

S 

2

0 
C H

L 
2 0000 1.76 0.61 0.4

4 
 12 19 S

S 

2

0 
C S

L 
2 0000 1.36 0.72 0.4

9 
11 19 S

S 

2

0 
C H

L 
1 0015 1.82 0.67 0.4

7 
 12 19 S

S 

2

0 
C S

L 
1 0015 1.35 0.68 0.4

5 
11 19 S

S 

2

0 
C H

L 
2 0015 1.78 0.66 0.4

7 
 12 19 S

S 

2

0 
C S

L 
2 0015 1.44 0.65 0.4

5 
11 19 S

S 

2

0 
C H

L 
1 0036 1.81 0.65 0.4

5 
 12 19 S

S 

2

0 
C S

L 
1 0036 1.41 0.70 0.4

6 
11 19 S

S 

2

0 
C H

L 
2 0036 1.83 0.62 0.4

5 
 12 19 S

S 

2

0 
C S

L 
2 0036 1.36 0.67 0.4

6 
11 19 S

S 

2

0 
C H

L 
1 0090 1.84 0.65 0.4

6 
 12 19 S

S 

2

0 
C S

L 
1 0090 1.39 0.62 0.4

2 
11 19 S

S 

2

0 
C H

L 
2 0090 1.88 0.63 0.4

6 
 12 19 S

S 

2

0 
C S

L 
2 0090 1.41 0.61 0.4

2 
11 19 S

S 

2

0 
C H

L 
1 0180 1.88 0.63 0.4

5 
 12 19 S

S 

2

0 
C S

L 
1 0180 1.42 0.60 0.4

0 
11 19 S

S 

2

0 
C H

L 
2 0180 1.94 0.62 0.4

5 
 12 19 S

S 

2

0 
C S

L 
2 0180 1.35 0.58 0.4

0 
11 19 S

S 

2

0 
C H

L 
1 0300 2.00 0.60 0.4

3 
 12 19 S

S 

2

0 
C S

L 
1 0300 1.38 0.59 0.3

9 
11 19 S

S 

2

0 
C H

L 
2 0300 1.92 0.59 0.4

3 
 12 19 S

S 

2

0 
C S

L 
2 0300 1.37 0.56 0.3

9 
11 19 S

S 

2

0 
C H

L 
1 0450 1.85 0.53 0.3

9 
 12 19 S

S 

2

0 
C S

L 
1 0450 1.37 0.56 0.3

8 
11 19 S

S 

2

0 
C H

L 
2 0450 1.90 0.53 0.3

9 
 12 19 S

S 

2

0 
C S

L 
2 0450 1.34 0.53 0.3

8 
11 19 S

S 

2

0 
C H

L 
1 0750 1.92 0.49 0.3

6 
 12 19 S

S 

2

0 
C S

L 
1 0750 1.45 0.48 0.3

4 
11 19 S

S 

2

0 
C H

L 
2 0750 1.94 0.46 0.3

6 
 12 19 S

S 

2

0 
C S

L 
2 0750 1.43 0.47 0.3

4 
11 19 S

S 

2

0 
C H

L 
1 1200 1.97 0.36 0.2

9 
 12 19 S

S 

2

0 
C S

L 
1 1200 1.45 0.50 0.3

5 
11 19 S

S 

2

0 
C H

L 
2 1200 1.95 0.34 0.2

9 
 12 19 S

S 

2

0 
C S

L 
2 1200 1.48 0.48 0.3

5 
11 19 S

S 

2

0 
C H

L 
1 1650 1.97 0.37 0.3

0 
 12 19 S

S 

2

0 
C S

L 
1 1650 1.43 0.44 0.3

2 
11 19 S

S 

2

0 
C H

L 
2 1650 2.02 0.38 0.3

0 
 12 19 S

S 

2

0 
C S

L 
2 1650 1.45 0.43 0.3

2  



 

 

207 

No Mix Label R # MPD DF20 F6

0 

 No Mix Label R # MPD DF20 F6

0 13 19 S

S 

2

0 
F D 1 0000 0.72 0.65 0.3

7 
 14 19 S

S 

2

0 
F H

L 
1 0000 0.73 0.78 0.4

1 
13 19 S

S 

2

0 
F D 2 0000 0.71 0.67 0.3

7 
 14 19 S

S 

2

0 
F H

L 
2 0000 0.69 0.72 0.4

1 
13 19 S

S 

2

0 
F D 1 0015 0.77 0.56 0.3

3 
 14 19 S

S 

2

0 
F H

L 
1 0015 0.93 0.81 0.4

6 
13 19 S

S 

2

0 
F D 2 0015 0.77 0.53 0.3

3 
 14 19 S

S 

2

0 
F H

L 
2 0015 0.89 0.77 0.4

6 
13 19 S

S 

2

0 
F D 1 0036 0.85 0.58 0.3

5 
 14 19 S

S 

2

0 
F H

L 
1 0036 0.93 0.75 0.4

3 
13 19 S

S 

2

0 
F D 2 0036 0.84 0.56 0.3

5 
 14 19 S

S 

2

0 
F H

L 
2 0036 0.89 0.71 0.4

3 
13 19 S

S 

2

0 
F D 1 0090 0.90 0.51 0.3

3 
 14 19 S

S 

2

0 
F H

L 
1 0090 0.88 0.72 0.4

2 
13 19 S

S 

2

0 
F D 2 0090 0.88 0.51 0.3

3 
 14 19 S

S 

2

0 
F H

L 
2 0090 0.92 0.69 0.4

2 
13 19 S

S 

2

0 
F D 1 0180 0.99 0.51 0.3

3 
 14 19 S

S 

2

0 
F H

L 
1 0180 1.05 0.64 0.4

0 
13 19 S

S 

2

0 
F D 2 0180 0.98 0.51 0.3

3 
 14 19 S

S 

2

0 
F H

L 
2 0180 1.10 0.62 0.4

0 
13 19 S

S 

2

0 
F D 1 0300 1.06 0.48 0.3

2 
 14 19 S

S 

2

0 
F H

L 
1 0300 1.03 0.60 0.3

8 
13 19 S

S 

2

0 
F D 2 0300 1.06 0.47 0.3

2 
 14 19 S

S 

2

0 
F H

L 
2 0300 1.07 0.58 0.3

8 
13 19 S

S 

2

0 
F D 1 0450 1.06 0.44 0.3

0 
 14 19 S

S 

2

0 
F H

L 
1 0450 1.04 0.60 0.3

8 
13 19 S

S 

2

0 
F D 2 0450 1.06 0.44 0.3

0 
 14 19 S

S 

2

0 
F H

L 
2 0450 1.06 0.58 0.3

8 
13 19 S

S 

2

0 
F D 1 0750 1.10 0.37 0.2

7 
 14 19 S

S 

2

0 
F H

L 
1 0750 1.23 0.57 0.3

9 
13 19 S

S 

2

0 
F D 2 0750 1.06 0.37 0.2

7 
 14 19 S

S 

2

0 
F H

L 
2 0750 1.30 0.57 0.3

9 
13 19 S

S 

2

0 
F D 1 1200 1.09 0.36 0.2

7 
 14 19 S

S 

2

0 
F H

L 
1 1200 1.29 0.49 0.3

4 
13 19 S

S 

2

0 
F D 2 1200 1.13 0.36 0.2

7 
 14 19 S

S 

2

0 
F H

L 
2 1200 1.27 0.49 0.3

4 
13 19 S

S 

2

0 
F D 1 1650 1.14 0.33 0.2

5 
 14 19 S

S 

2

0 
F H

L 
1 1650 1.43 0.47 0.3

4 
13 19 S

S 

2

0 
F D 2 1650 1.08 0.34 0.2

5 
 14 19 S

S 

2

0 
F H

L 
2 1650 1.40 0.47 0.3

4                        

15 19 S

S 

2

0 
F S

L 
1 0000 1.08 0.87 0.5

0 
 16 19 S

S 

2

0 
S D 1 0000 1.43 0.67 0.4

4 
15 19 S

S 

2

0 
F S

L 
2 0000 1.05 0.79 0.5

0 
 16 19 S

S 

2

0 
S D 2 0000 1.43 0.64 0.4

4 
15 19 S

S 

2

0 
F S

L 
1 0015 1.40 0.78 0.5

0 
 16 19 S

S 

2

0 
S D 1 0015 1.49 0.64 0.4

3 
15 19 S

S 

2

0 
F S

L 
2 0015 1.37 0.75 0.5

0 
 16 19 S

S 

2

0 
S D 2 0015 1.45 0.61 0.4

3 
15 19 S

S 

2

0 
F S

L 
1 0036 1.66 0.73 0.4

9 
 16 19 S

S 

2

0 
S D 1 0036 1.42 0.67 0.4

5 
15 19 S

S 

2

0 
F S

L 
2 0036 1.64 0.71 0.4

9 
 16 19 S

S 

2

0 
S D 2 0036 1.38 0.65 0.4

5 
15 19 S

S 

2

0 
F S

L 
1 0090 1.81 0.66 0.4

6 
 16 19 S

S 

2

0 
S D 1 0090 1.38 0.60 0.4

0 
15 19 S

S 

2

0 
F S

L 
2 0090 1.80 0.64 0.4

6 
 16 19 S

S 

2

0 
S D 2 0090 1.35 0.58 0.4

0 
15 19 S

S 

2

0 
F S

L 
1 0180 2.00 0.62 0.4

4 
 16 19 S

S 

2

0 
S D 1 0180 1.36 0.55 0.3

8 
15 19 S

S 

2

0 
F S

L 
2 0180 2.06 0.60 0.4

4 
 16 19 S

S 

2

0 
S D 2 0180 1.37 0.54 0.3

8 
15 19 S

S 

2

0 
F S

L 
1 0300 2.03 0.56 0.4

1 
 16 19 S

S 

2

0 
S D 1 0300 1.35 0.52 0.3

6 
15 19 S

S 

2

0 
F S

L 
2 0300 2.02 0.54 0.4

1 
 16 19 S

S 

2

0 
S D 2 0300 1.41 0.50 0.3

6 
15 19 S

S 

2

0 
F S

L 
1 0450 1.92 0.54 0.4

0 
 16 19 S

S 

2

0 
S D 1 0450 1.39 0.47 0.3

4 
15 19 S

S 

2

0 
F S

L 
2 0450 1.98 0.53 0.4

0 
 16 19 S

S 

2

0 
S D 2 0450 1.43 0.46 0.3

4 
15 19 S

S 

2

0 
F S

L 
1 0750 1.91 0.49 0.3

7 
 16 19 S

S 

2

0 
S D 1 0750 1.47 0.41 0.3

0 
15 19 S

S 

2

0 
F S

L 
2 0750 1.87 0.48 0.3

7 
 16 19 S

S 

2

0 
S D 2 0750 1.48 0.40 0.3

0 
15 19 S

S 

2

0 
F S

L 
1 1200 2.31 0.46 0.3

5 
 16 19 S

S 

2

0 
S D 1 1200 1.30 0.39 0.2

9 
15 19 S

S 

2

0 
F S

L 
2 1200 2.27 0.44 0.3

5 
 16 19 S

S 

2

0 
S D 2 1200 1.30 0.38 0.2

9 
15 19 S

S 

2

0 
F S

L 
1 1650 2.30 0.42 0.3

4 
 16 19 S

S 

2

0 
S D 1 1650 1.49 0.37 0.2

9 
15 19 S

S 

2

0 
F S

L 
2 1650 2.31 0.43 0.3

4 
 16 19 S

S 

2

0 
S D 2 1650 1.39 0.38 0.2

9  
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No Mix Label R # MPD DF20 F6

0 

 No Mix Label R # MPD DF20 F6

0 17 19 S

S 

2

0 
S H

L 
1 0000 1.37 0.70 0.4

6 
 18 19 S

S 

2

0 
S S

L 
1 0000 1.12 0.55 0.3

7 
17 19 S

S 

2

0 
S H

L 
2 0000 1.42 0.67 0.4

6 
 18 19 S

S 

2

0 
S S

L 
2 0000 1.13 0.57 0.3

7 
17 19 S

S 

2

0 
S H

L 
1 0015 1.42 0.62 0.4

1 
 18 19 S

S 

2

0 
S S

L 
1 0015 1.10 0.73 0.4

5 
17 19 S

S 

2

0 
S H

L 
2 0015 1.40 0.59 0.4

1 
 18 19 S

S 

2

0 
S S

L 
2 0015 1.11 0.71 0.4

5 
17 19 S

S 

2

0 
S H

L 
1 0036 1.28 0.66 0.4

3 
 18 19 S

S 

2

0 
S S

L 
1 0036 1.08 0.69 0.4

3 
17 19 S

S 

2

0 
S H

L 
2 0036 1.30 0.64 0.4

3 
 18 19 S

S 

2

0 
S S

L 
2 0036 1.10 0.66 0.4

3 
17 19 S

S 

2

0 
S H

L 
1 0090 1.37 0.63 0.4

2 
 18 19 S

S 

2

0 
S S

L 
1 0090 1.08 0.62 0.3

9 
17 19 S

S 

2

0 
S H

L 
2 0090 1.30 0.61 0.4

2 
 18 19 S

S 

2

0 
S S

L 
2 0090 1.06 0.60 0.3

9 
17 19 S

S 

2

0 
S H

L 
1 0180 1.31 0.59 0.3

9 
 18 19 S

S 

2

0 
S S

L 
1 0180 1.11 0.59 0.3

8 
17 19 S

S 

2

0 
S H

L 
2 0180 1.33 0.56 0.3

9 
 18 19 S

S 

2

0 
S S

L 
2 0180 1.15 0.56 0.3

8 
17 19 S

S 

2

0 
S H

L 
1 0300 1.28 0.56 0.3

8 
 18 19 S

S 

2

0 
S S

L 
1 0300 1.14 0.54 0.3

6 
17 19 S

S 

2

0 
S H

L 
2 0300 1.28 0.54 0.3

8 
 18 19 S

S 

2

0 
S S

L 
2 0300 1.15 0.52 0.3

6 
17 19 S

S 

2

0 
S H

L 
1 0450 1.33 0.51 0.3

5 
 18 19 S

S 

2

0 
S S

L 
1 0450 1.17 0.50 0.3

4 
17 19 S

S 

2

0 
S H

L 
2 0450 1.28 0.48 0.3

5 
 18 19 S

S 

2

0 
S S

L 
2 0450 1.20 0.49 0.3

4 
17 19 S

S 

2

0 
S H

L 
1 0750 1.29 0.45 0.3

2 
 18 19 S

S 

2

0 
S S

L 
1 0750 1.14 0.46 0.3

2 
17 19 S

S 

2

0 
S H

L 
2 0750 1.25 0.43 0.3

2 
 18 19 S

S 

2

0 
S S

L 
2 0750 1.17 0.44 0.3

2 
17 19 S

S 

2

0 
S H

L 
1 1200 1.33 0.42 0.3

1 
 18 19 S

S 

2

0 
S S

L 
1 1200 1.19 0.38 0.2

8 
17 19 S

S 

2

0 
S H

L 
2 1200 1.29 0.42 0.3

1 
 18 19 S

S 

2

0 
S S

L 
2 1200 1.09 0.38 0.2

8 
17 19 S

S 

2

0 
S H

L 
1 1650 1.38 0.39 0.2

9 
 18 19 S

S 

2

0 
S S

L 
1 1650 1.16 0.39 0.2

8 
17 19 S

S 

2

0 
S H

L 
2 1650 1.33 0.38 0.2

9 
 18 19 S

S 

2

0 
S S

L 
2 1650 1.14 0.38 0.2

8 
                       

19 95 Q 2

0 
C D 1 0000 0.98 0.63 0.3

8 
 20 95 Q 2

0 
C H

L 
1 0000 0.77 0.54 0.3

3 
19 95 Q 2

0 
C D 2 0000 1.02 0.59 0.3

8 
 20 95 Q 2

0 
C H

L 
2 0000 0.78 0.57 0.3

3 
19 95 Q 2

0 
C D 1 0015 1.02 0.76 0.4

6 
 20 95 Q 2

0 
C H

L 
1 0015 0.88 0.52 0.3

2 
19 95 Q 2

0 
C D 2 0015 1.05 0.73 0.4

6 
 20 95 Q 2

0 
C H

L 
2 0015 0.82 0.51 0.3

2 
19 95 Q 2

0 
C D 1 0036 1.03 0.70 0.4

2 
 20 95 Q 2

0 
C H

L 
1 0036 0.80 0.65 0.3

7 
19 95 Q 2

0 
C D 2 0036 0.98 0.68 0.4

2 
 20 95 Q 2

0 
C H

L 
2 0036 0.78 0.64 0.3

7 
19 95 Q 2

0 
C D 1 0090 1.04 0.63 0.3

9 
 20 95 Q 2

0 
C H

L 
1 0090 0.75 0.65 0.3

7 
19 95 Q 2

0 
C D 2 0090 1.01 0.61 0.3

9 
 20 95 Q 2

0 
C H

L 
2 0090 0.83 0.61 0.3

7 
19 95 Q 2

0 
C D 1 0180 0.97 0.58 0.3

7 
 20 95 Q 2

0 
C H

L 
1 0180 0.79 0.60 0.3

5 
19 95 Q 2

0 
C D 2 0180 0.97 0.57 0.3

7 
 20 95 Q 2

0 
C H

L 
2 0180 0.84 0.58 0.3

5 
19 95 Q 2

0 
C D 1 0300 1.01 0.56 0.3

6 
 20 95 Q 2

0 
C H

L 
1 0300 0.83 0.56 0.3

4 
19 95 Q 2

0 
C D 2 0300 1.07 0.55 0.3

6 
 20 95 Q 2

0 
C H

L 
2 0300 0.89 0.53 0.3

4 
19 95 Q 2

0 
C D 1 0450 1.12 0.52 0.3

5 
 20 95 Q 2

0 
C H

L 
1 0450 0.81 0.52 0.3

2 
19 95 Q 2

0 
C D 2 0450 1.18 0.51 0.3

5 
 20 95 Q 2

0 
C H

L 
2 0450 0.86 0.50 0.3

2 
19 95 Q 2

0 
C D 1 0750 1.07 0.46 0.3

1 
 20 95 Q 2

0 
C H

L 
1 0750 0.77 0.47 0.2

9 
19 95 Q 2

0 
C D 2 0750 1.09 0.45 0.3

1 
 20 95 Q 2

0 
C H

L 
2 0750 0.76 0.47 0.2

9 
19 95 Q 2

0 
C D 1 1200 1.13 0.38 0.2

8 
 20 95 Q 2

0 
C H

L 
1 1200 0.90 0.43 0.2

8 
19 95 Q 2

0 
C D 2 1200 1.14 0.38 0.2

8 
 20 95 Q 2

0 
C H

L 
2 1200 0.84 0.42 0.2

8 
19 95 Q 2

0 
C D 1 1650 1.11 0.36 0.2

6 
 20 95 Q 2

0 
C H

L 
1 1650 0.89 0.41 0.2

8 
19 95 Q 2

0 
C D 2 1650 1.10 0.36 0.2

6 
 20 95 Q 2

0 
C H

L 
2 1650 0.86 0.41 0.2

8  
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No Mix Label R # MPD DF20 F6

0 

 No Mix Label R # MPD DF20 F6

0 21 95 Q 2

0 
C S

L 
1 0000 0.86 0.52 0.3

3 
 22 95 Q 2

0 
F D 1 0000 0.34 0.70 0.2

8 
21 95 Q 2

0 
C S

L 
2 0000 0.89 0.51 0.3

3 
 22 95 Q 2

0 
F D 2 0000 0.34 0.66 0.2

8 
21 95 Q 2

0 
C S

L 
1 0015 0.87 0.57 0.3

5 
 22 95 Q 2

0 
F D 1 0015 0.43 0.67 0.3

0 
21 95 Q 2

0 
C S

L 
2 0015 0.86 0.55 0.3

5 
 22 95 Q 2

0 
F D 2 0015 0.42 0.63 0.3

0 
21 95 Q 2

0 
C S

L 
1 0036 0.92 0.58 0.3

5 
 22 95 Q 2

0 
F D 1 0036 0.41 0.65 0.2

9 
21 95 Q 2

0 
C S

L 
2 0036 0.88 0.55 0.3

5 
 22 95 Q 2

0 
F D 2 0036 0.43 0.60 0.2

9 
21 95 Q 2

0 
C S

L 
1 0090 0.94 0.52 0.3

3 
 22 95 Q 2

0 
F D 1 0090 0.49 0.59 0.3

0 
21 95 Q 2

0 
C S

L 
2 0090 0.92 0.51 0.3

3 
 22 95 Q 2

0 
F D 2 0090 0.52 0.58 0.3

0 
21 95 Q 2

0 
C S

L 
1 0180 1.05 0.49 0.3

2 
 22 95 Q 2

0 
F D 1 0180 0.56 0.52 0.2

8 
21 95 Q 2

0 
C S

L 
2 0180 0.94 0.47 0.3

2 
 22 95 Q 2

0 
F D 2 0180 0.57 0.51 0.2

8 
21 95 Q 2

0 
C S

L 
1 0300 0.90 0.43 0.2

9 
 22 95 Q 2

0 
F D 1 0300 0.63 0.50 0.2

8 
21 95 Q 2

0 
C S

L 
2 0300 0.92 0.43 0.2

9 
 22 95 Q 2

0 
F D 2 0300 0.61 0.48 0.2

8 
21 95 Q 2

0 
C S

L 
1 0450 1.02 0.49 0.3

2 
 22 95 Q 2

0 
F D 1 0450 0.65 0.50 0.2

8 
21 95 Q 2

0 
C S

L 
2 0450 1.02 0.47 0.3

2 
 22 95 Q 2

0 
F D 2 0450 0.66 0.47 0.2

8 
21 95 Q 2

0 
C S

L 
1 0750 1.00 0.47 0.3

1 
 22 95 Q 2

0 
F D 1 0750 0.66 0.42 0.2

6 
21 95 Q 2

0 
C S

L 
2 0750 0.99 0.47 0.3

1 
 22 95 Q 2

0 
F D 2 0750 0.68 0.42 0.2

6 
21 95 Q 2

0 
C S

L 
1 1200 0.98 0.35 0.2

5 
 22 95 Q 2

0 
F D 1 1200 0.65 0.38 0.2

4 
21 95 Q 2

0 
C S

L 
2 1200 0.99 0.35 0.2

5 
 22 95 Q 2

0 
F D 2 1200 0.66 0.39 0.2

4 
21 95 Q 2

0 
C S

L 
1 1650 0.94 0.34 0.2

6 
 22 95 Q 2

0 
F D 1 1650 0.66 0.36 0.2

3 
21 95 Q 2

0 
C S

L 
2 1650 0.96 0.38 0.2

6 
 22 95 Q 2

0 
F D 2 1650 0.66 0.36 0.2

3                        
23 95 Q 2

0 
F H

L 
1 0000 0.33 0.66 0.2

6 
 24 95 Q 2

0 
F S

L 
1 0000 0.42 0.67 0.3

0 
23 95 Q 2

0 
F H

L 
2 0000 0.31 0.61 0.2

6 
 24 95 Q 2

0 
F S

L 
2 0000 0.42 0.62 0.3

0 
23 95 Q 2

0 
F H

L 
1 0015 0.39 0.69 0.3

0 
 24 95 Q 2

0 
F S

L 
1 0015 0.57 0.65 0.3

3 
23 95 Q 2

0 
F H

L 
2 0015 0.39 0.65 0.3

0 
 24 95 Q 2

0 
F S

L 
2 0015 0.54 0.62 0.3

3 
23 95 Q 2

0 
F H

L 
1 0036 0.39 0.68 0.2

9 
 24 95 Q 2

0 
F S

L 
1 0036 0.56 0.65 0.3

3 
23 95 Q 2

0 
F H

L 
2 0036 0.40 0.63 0.2

9 
 24 95 Q 2

0 
F S

L 
2 0036 0.53 0.63 0.3

3 
23 95 Q 2

0 
F H

L 
1 0090 0.45 0.61 0.3

0 
 24 95 Q 2

0 
F S

L 
1 0090 0.68 0.59 0.3

3 
23 95 Q 2

0 
F H

L 
2 0090 0.49 0.60 0.3

0 
 24 95 Q 2

0 
F S

L 
2 0090 0.68 0.57 0.3

3 
23 95 Q 2

0 
F H

L 
1 0180 0.52 0.59 0.3

0 
 24 95 Q 2

0 
F S

L 
1 0180 0.72 0.53 0.3

1 
23 95 Q 2

0 
F H

L 
2 0180 0.51 0.55 0.3

0 
 24 95 Q 2

0 
F S

L 
2 0180 0.73 0.52 0.3

1 
23 95 Q 2

0 
F H

L 
1 0300 0.64 0.52 0.3

0 
 24 95 Q 2

0 
F S

L 
1 0300 0.82 0.48 0.3

1 
23 95 Q 2

0 
F H

L 
2 0300 0.64 0.52 0.3

0 
 24 95 Q 2

0 
F S

L 
2 0300 0.80 0.50 0.3

1 
23 95 Q 2

0 
F H

L 
1 0450 0.71 0.53 0.3

1 
 24 95 Q 2

0 
F S

L 
1 0450 0.87 0.48 0.3

0 
23 95 Q 2

0 
F H

L 
2 0450 0.70 0.51 0.3

1 
 24 95 Q 2

0 
F S

L 
2 0450 0.87 0.45 0.3

0 
23 95 Q 2

0 
F H

L 
1 0750 0.72 0.45 0.2

8 
 24 95 Q 2

0 
F S

L 
1 0750 0.84 0.37 0.2

6 
23 95 Q 2

0 
F H

L 
2 0750 0.74 0.43 0.2

8 
 24 95 Q 2

0 
F S

L 
2 0750 0.87 0.37 0.2

6 
23 95 Q 2

0 
F H

L 
1 1200 0.80 0.42 0.2

7 
 24 95 Q 2

0 
F S

L 
1 1200 0.86 0.33 0.2

4 
23 95 Q 2

0 
F H

L 
2 1200 0.75 0.40 0.2

7 
 24 95 Q 2

0 
F S

L 
2 1200 0.85 0.34 0.2

4 
23 95 Q 2

0 
F H

L 
1 1650 0.73 0.34 0.2

3 
 24 95 Q 2

0 
F S

L 
1 1650 0.88 0.30 0.2

2 
23 95 Q 2

0 
F H

L 
2 1650 0.72 0.33 0.2

3 
 24 95 Q 2

0 
F S

L 
2 1650 0.88 0.28 0.2

2  
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No Mix Label R # MPD DF20 F6

0 

 No Mix Label R # MPD DF20 F6

0 25 95 Q 2

0 
S D 1 0000 0.70 0.64 0.3

5 
 26 95 Q 2

0 
S H

L 
1 0000 0.95 0.67 0.4

1 
25 95 Q 2

0 
S D 2 0000 0.70 0.60 0.3

5 
 26 95 Q 2

0 
S H

L 
2 0000 1.00 0.65 0.4

1 
25 95 Q 2

0 
S D 1 0015 0.69 0.73 0.4

0 
 26 95 Q 2

0 
S H

L 
1 0015 0.94 0.67 0.4

0 
25 95 Q 2

0 
S D 2 0015 0.73 0.71 0.4

0 
 26 95 Q 2

0 
S H

L 
2 0015 0.94 0.65 0.4

0 
25 95 Q 2

0 
S D 1 0036 0.66 0.70 0.3

7 
 26 95 Q 2

0 
S H

L 
1 0036 1.01 0.68 0.4

2 
25 95 Q 2

0 
S D 2 0036 0.66 0.66 0.3

7 
 26 95 Q 2

0 
S H

L 
2 0036 1.08 0.65 0.4

2 
25 95 Q 2

0 
S D 1 0090 0.67 0.62 0.3

4 
 26 95 Q 2

0 
S H

L 
1 0090 0.96 0.61 0.3

7 
25 95 Q 2

0 
S D 2 0090 0.64 0.59 0.3

4 
 26 95 Q 2

0 
S H

L 
2 0090 0.96 0.58 0.3

7 
25 95 Q 2

0 
S D 1 0180 0.72 0.58 0.3

4 
 26 95 Q 2

0 
S H

L 
1 0180 1.08 0.58 0.3

7 
25 95 Q 2

0 
S D 2 0180 0.72 0.57 0.3

4 
 26 95 Q 2

0 
S H

L 
2 0180 0.98 0.56 0.3

7 
25 95 Q 2

0 
S D 1 0300 0.69 0.54 0.3

2 
 26 95 Q 2

0 
S H

L 
1 0300 0.98 0.56 0.3

5 
25 95 Q 2

0 
S D 2 0300 0.78 0.53 0.3

2 
 26 95 Q 2

0 
S H

L 
2 0300 1.00 0.53 0.3

5 
25 95 Q 2

0 
S D 1 0450 0.74 0.47 0.2

9 
 26 95 Q 2

0 
S H

L 
1 0450 1.03 0.51 0.3

3 
25 95 Q 2

0 
S D 2 0450 0.72 0.47 0.2

9 
 26 95 Q 2

0 
S H

L 
2 0450 1.00 0.49 0.3

3 
25 95 Q 2

0 
S D 1 0750 0.76 0.41 0.2

6 
 26 95 Q 2

0 
S H

L 
1 0750 1.02 0.41 0.2

8 
25 95 Q 2

0 
S D 2 0750 0.76 0.41 0.2

6 
 26 95 Q 2

0 
S H

L 
2 0750 1.05 0.39 0.2

8 
25 95 Q 2

0 
S D 1 1200 0.75 0.37 0.2

5 
 26 95 Q 2

0 
S H

L 
1 1200 0.98 0.42 0.2

8 
25 95 Q 2

0 
S D 2 1200 0.76 0.37 0.2

5 
 26 95 Q 2

0 
S H

L 
2 1200 1.02 0.40 0.2

8 
25 95 Q 2

0 
S D 1 1650 0.73 0.36 0.2

4 
 26 95 Q 2

0 
S H

L 
1 1650 1.04 0.39 0.2

8 
25 95 Q 2

0 
S D 2 1650 0.76 0.36 0.2

4 
 26 95 Q 2

0 
S H

L 
2 1650 1.06 0.40 0.2

8                        
27 95 Q 2

0 
S S

L 
1 0000 0.73 0.67 0.3

7 
 28 95 S

S 

2

0 
C D 1 0000 0.75 0.70 0.3

9 
27 95 Q 2

0 
S S

L 
2 0000 0.72 0.63 0.3

7 
 28 95 S

S 

2

0 
C D 2 0000 0.81 0.67 0.3

9 
27 95 Q 2

0 
S S

L 
1 0015 0.68 0.62 0.3

4 
 28 95 S

S 

2

0 
C D 1 0015 0.80 0.71 0.4

0 
27 95 Q 2

0 
S S

L 
2 0015 0.68 0.60 0.3

4 
 28 95 S

S 

2

0 
C D 2 0015 0.79 0.67 0.4

0 
27 95 Q 2

0 
S S

L 
1 0036 0.73 0.65 0.3

7 
 28 95 S

S 

2

0 
C D 1 0036 0.87 0.71 0.4

1 
27 95 Q 2

0 
S S

L 
2 0036 0.70 0.65 0.3

7 
 28 95 S

S 

2

0 
C D 2 0036 0.88 0.68 0.4

1 
27 95 Q 2

0 
S S

L 
1 0090 0.68 0.60 0.3

4 
 28 95 S

S 

2

0 
C D 1 0090 0.86 0.67 0.3

9 
27 95 Q 2

0 
S S

L 
2 0090 0.71 0.58 0.3

4 
 28 95 S

S 

2

0 
C D 2 0090 0.90 0.64 0.3

9 
27 95 Q 2

0 
S S

L 
1 0180 0.74 0.59 0.3

4 
 28 95 S

S 

2

0 
C D 1 0180 0.88 0.60 0.3

6 
27 95 Q 2

0 
S S

L 
2 0180 0.72 0.57 0.3

4 
 28 95 S

S 

2

0 
C D 2 0180 0.82 0.58 0.3

6 
27 95 Q 2

0 
S S

L 
1 0300 0.75 0.51 0.3

1 
 28 95 S

S 

2

0 
C D 1 0300 0.89 0.57 0.3

5 
27 95 Q 2

0 
S S

L 
2 0300 0.83 0.50 0.3

1 
 28 95 S

S 

2

0 
C D 2 0300 0.90 0.56 0.3

5 
27 95 Q 2

0 
S S

L 
1 0450 0.81 0.48 0.3

0 
 28 95 S

S 

2

0 
C D 1 0450 0.89 0.53 0.3

3 
27 95 Q 2

0 
S S

L 
2 0450 0.83 0.47 0.3

0 
 28 95 S

S 

2

0 
C D 2 0450 0.90 0.52 0.3

3 
27 95 Q 2

0 
S S

L 
1 0750 0.82 0.43 0.2

8 
 28 95 S

S 

2

0 
C D 1 0750 0.98 0.48 0.3

1 
27 95 Q 2

0 
S S

L 
2 0750 0.78 0.43 0.2

8 
 28 95 S

S 

2

0 
C D 2 0750 1.00 0.46 0.3

1 
27 95 Q 2

0 
S S

L 
1 1200 0.79 0.39 0.2

6 
 28 95 S

S 

2

0 
C D 1 1200 0.97 0.43 0.2

8 
27 95 Q 2

0 
S S

L 
2 1200 0.84 0.38 0.2

6 
 28 95 S

S 

2

0 
C D 2 1200 1.00 0.39 0.2

8 
27 95 Q 2

0 
S S

L 
1 1650 0.80 0.35 0.2

4 
 28 95 S

S 

2

0 
C D 1 1650 0.92 0.39 0.2

7 
27 95 Q 2

0 
S S

L 
2 1650 0.82 0.34 0.2

4 
 28 95 S

S 

2

0 
C D 2 1650 1.00 0.38 0.2

7  
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No Mix Label R # MPD DF20 F6

0 

 No Mix Label R # MPD DF20 F6

0 29 95 S

S 

2

0 
C H

L 
1 0000 0.88 0.65 0.3

7 
 30 95 S

S 

2

0 
C S

L 
1 0000 1.03 0.59 0.3

8 
29 95 S

S 

2

0 
C H

L 
2 0000 0.81 0.59 0.3

7 
 30 95 S

S 

2

0 
C S

L 
2 0000 0.96 0.62 0.3

8 
29 95 S

S 

2

0 
C H

L 
1 0015 0.82 0.64 0.3

8 
 30 95 S

S 

2

0 
C S

L 
1 0015 0.94 0.50 0.3

2 
29 95 S

S 

2

0 
C H

L 
2 0015 0.81 0.67 0.3

8 
 30 95 S

S 

2

0 
C S

L 
2 0015 0.93 0.49 0.3

2 
29 95 S

S 

2

0 
C H

L 
1 0036 0.79 0.71 0.4

0 
 30 95 S

S 

2

0 
C S

L 
1 0036 0.94 0.64 0.3

9 
29 95 S

S 

2

0 
C H

L 
2 0036 0.84 0.68 0.4

0 
 30 95 S

S 

2

0 
C S

L 
2 0036 0.93 0.61 0.3

9 
29 95 S

S 

2

0 
C H

L 
1 0090 0.82 0.62 0.3

7 
 30 95 S

S 

2

0 
C S

L 
1 0090 1.00 0.60 0.3

8 
29 95 S

S 

2

0 
C H

L 
2 0090 0.85 0.61 0.3

7 
 30 95 S

S 

2

0 
C S

L 
2 0090 1.00 0.59 0.3

8 
29 95 S

S 

2

0 
C H

L 
1 0180 0.91 0.57 0.3

5 
 30 95 S

S 

2

0 
C S

L 
1 0180 1.00 0.56 0.3

6 
29 95 S

S 

2

0 
C H

L 
2 0180 0.88 0.55 0.3

5 
 30 95 S

S 

2

0 
C S

L 
2 0180 1.03 0.54 0.3

6 
29 95 S

S 

2

0 
C H

L 
1 0300 0.92 0.53 0.3

4 
 30 95 S

S 

2

0 
C S

L 
1 0300 1.02 0.52 0.3

4 
29 95 S

S 

2

0 
C H

L 
2 0300 0.92 0.52 0.3

4 
 30 95 S

S 

2

0 
C S

L 
2 0300 1.00 0.51 0.3

4 
29 95 S

S 

2

0 
C H

L 
1 0450 0.96 0.49 0.3

2 
 30 95 S

S 

2

0 
C S

L 
1 0450 1.04 0.50 0.3

3 
29 95 S

S 

2

0 
C H

L 
2 0450 0.98 0.48 0.3

2 
 30 95 S

S 

2

0 
C S

L 
2 0450 1.05 0.48 0.3

3 
29 95 S

S 

2

0 
C H

L 
1 0750 1.04 0.42 0.2

9 
 30 95 S

S 

2

0 
C S

L 
1 0750 1.03 0.46 0.3

1 
29 95 S

S 

2

0 
C H

L 
2 0750 1.01 0.42 0.2

9 
 30 95 S

S 

2

0 
C S

L 
2 0750 1.01 0.44 0.3

1 
29 95 S

S 

2

0 
C H

L 
1 1200 0.96 0.40 0.2

8 
 30 95 S

S 

2

0 
C S

L 
1 1200 1.08 0.42 0.2

9 
29 95 S

S 

2

0 
C H

L 
2 1200 1.00 0.39 0.2

8 
 30 95 S

S 

2

0 
C S

L 
2 1200 1.02 0.41 0.2

9 
29 95 S

S 

2

0 
C H

L 
1 1650 1.07 0.40 0.2

8 
 30 95 S

S 

2

0 
C S

L 
1 1650 1.00 0.40 0.2

8 
29 95 S

S 

2

0 
C H

L 
2 1650 0.97 0.41 0.2

8 
 30 95 S

S 

2

0 
C S

L 
2 1650 1.02 0.40 0.2

8                        
31 95 S

S 

2

0 
F D 1 0000 0.39 0.75 0.3

1 
 32 95 S

S 

2

0 
F H

L 
1 0000 0.35 0.45 0.2

1 
31 95 S

S 

2

0 
F D 2 0000 0.40 0.64 0.3

1 
 32 95 S

S 

2

0 
F H

L 
2 0000 0.34 0.42 0.2

1 
31 95 S

S 

2

0 
F D 1 0015 0.42 0.71 0.3

2 
 32 95 S

S 

2

0 
F H

L 
1 0015 0.33 0.54 0.2

4 
31 95 S

S 

2

0 
F D 2 0015 0.41 0.70 0.3

2 
 32 95 S

S 

2

0 
F H

L 
2 0015 0.34 0.53 0.2

4 
31 95 S

S 

2

0 
F D 1 0036 0.43 0.68 0.3

1 
 32 95 S

S 

2

0 
F H

L 
1 0036 0.35 0.61 0.2

6 
31 95 S

S 

2

0 
F D 2 0036 0.43 0.67 0.3

1 
 32 95 S

S 

2

0 
F H

L 
2 0036 0.35 0.58 0.2

6 
31 95 S

S 

2

0 
F D 1 0090 0.47 0.62 0.3

0 
 32 95 S

S 

2

0 
F H

L 
1 0090 0.39 0.58 0.2

6 
31 95 S

S 

2

0 
F D 2 0090 0.46 0.60 0.3

0 
 32 95 S

S 

2

0 
F H

L 
2 0090 0.36 0.55 0.2

6 
31 95 S

S 

2

0 
F D 1 0180 0.57 0.57 0.3

0 
 32 95 S

S 

2

0 
F H

L 
1 0180 0.37 0.52 0.2

4 
31 95 S

S 

2

0 
F D 2 0180 0.54 0.55 0.3

0 
 32 95 S

S 

2

0 
F H

L 
2 0180 0.38 0.51 0.2

4 
31 95 S

S 

2

0 
F D 1 0300 0.58 0.55 0.3

0 
 32 95 S

S 

2

0 
F H

L 
1 0300 0.43 0.50 0.2

5 
31 95 S

S 

2

0 
F D 2 0300 0.59 0.54 0.3

0 
 32 95 S

S 

2

0 
F H

L 
2 0300 0.44 0.47 0.2

5 
31 95 S

S 

2

0 
F D 1 0450 0.72 0.51 0.3

0 
 32 95 S

S 

2

0 
F H

L 
1 0450 0.51 0.47 0.2

5 
31 95 S

S 

2

0 
F D 2 0450 0.67 0.51 0.3

0 
 32 95 S

S 

2

0 
F H

L 
2 0450 0.50 0.45 0.2

5 
31 95 S

S 

2

0 
F D 1 0750 0.69 0.47 0.2

8 
 32 95 S

S 

2

0 
F H

L 
1 0750 0.52 0.41 0.2

3 
31 95 S

S 

2

0 
F D 2 0750 0.70 0.46 0.2

8 
 32 95 S

S 

2

0 
F H

L 
2 0750 0.51 0.38 0.2

3 
31 95 S

S 

2

0 
F D 1 1200 0.75 0.43 0.2

7 
 32 95 S

S 

2

0 
F H

L 
1 1200 0.51 0.37 0.2

2 
31 95 S

S 

2

0 
F D 2 1200 0.73 0.42 0.2

7 
 32 95 S

S 

2

0 
F H

L 
2 1200 0.52 0.37 0.2

2 
31 95 S

S 

2

0 
F D 1 1650 0.71 0.41 0.2

6 
 32 95 S

S 

2

0 
F H

L 
1 1650 0.54 0.34 0.2

1 
31 95 S

S 

2

0 
F D 2 1650 0.69 0.40 0.2

6 
 32 95 S

S 

2

0 
F H

L 
2 1650 0.51 0.34 0.2

1  
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No Mix Label R # MPD DF20 F6

0 

 No Mix Label R # MPD DF20 F6

0 33 95 S

S 

2

0 
F S

L 
1 0000 0.35 0.50 0.2

3 
 34 95 S

S 

2

0 
S D 1 0000 0.71 0.62 0.3

4 
33 95 S

S 

2

0 
F S

L 
2 0000 0.36 0.47 0.2

3 
 34 95 S

S 

2

0 
S D 2 0000 0.64 0.61 0.3

4 
33 95 S

S 

2

0 
F S

L 
1 0015 0.43 0.75 0.3

3 
 34 95 S

S 

2

0 
S D 1 0015 0.64 0.65 0.3

4 
33 95 S

S 

2

0 
F S

L 
2 0015 0.43 0.71 0.3

3 
 34 95 S

S 

2

0 
S D 2 0015 0.64 0.62 0.3

4 
33 95 S

S 

2

0 
F S

L 
1 0036 0.47 0.72 0.3

3 
 34 95 S

S 

2

0 
S D 1 0036 0.63 0.70 0.3

7 
33 95 S

S 

2

0 
F S

L 
2 0036 0.48 0.68 0.3

3 
 34 95 S

S 

2

0 
S D 2 0036 0.65 0.68 0.3

7 
33 95 S

S 

2

0 
F S

L 
1 0090 0.57 0.66 0.3

4 
 34 95 S

S 

2

0 
S D 1 0090 0.65 0.63 0.3

5 
33 95 S

S 

2

0 
F S

L 
2 0090 0.55 0.65 0.3

4 
 34 95 S

S 

2

0 
S D 2 0090 0.71 0.61 0.3

5 
33 95 S

S 

2

0 
F S

L 
1 0180 0.61 0.62 0.3

3 
 34 95 S

S 

2

0 
S D 1 0180 0.68 0.58 0.3

2 
33 95 S

S 

2

0 
F S

L 
2 0180 0.59 0.61 0.3

3 
 34 95 S

S 

2

0 
S D 2 0180 0.66 0.56 0.3

2 
33 95 S

S 

2

0 
F S

L 
1 0300 0.68 0.58 0.3

3 
 34 95 S

S 

2

0 
S D 1 0300 0.72 0.54 0.3

1 
33 95 S

S 

2

0 
F S

L 
2 0300 0.68 0.56 0.3

3 
 34 95 S

S 

2

0 
S D 2 0300 0.69 0.53 0.3

1 
33 95 S

S 

2

0 
F S

L 
1 0450 0.71 0.55 0.3

2 
 34 95 S

S 

2

0 
S D 1 0450 0.74 0.48 0.2

9 
33 95 S

S 

2

0 
F S

L 
2 0450 0.70 0.55 0.3

2 
 34 95 S

S 

2

0 
S D 2 0450 0.76 0.47 0.2

9 
33 95 S

S 

2

0 
F S

L 
1 0750 0.76 0.47 0.3

0 
 34 95 S

S 

2

0 
S D 1 0750 0.75 0.41 0.3

1 
33 95 S

S 

2

0 
F S

L 
2 0750 0.77 0.48 0.3

0 
 34 95 S

S 

2

0 
S D 2 0750 0.75 0.42 0.3

1 
33 95 S

S 

2

0 
F S

L 
1 1200 0.83 0.44 0.3

3 
 34 95 S

S 

2

0 
S D 1 1200 0.81 0.40 0.2

7 
33 95 S

S 

2

0 
F S

L 
2 1200 0.81 0.42 0.3

3 
 34 95 S

S 

2

0 
S D 2 1200 0.77 0.42 0.2

7 
33 95 S

S 

2

0 
F S

L 
1 1650 0.81 0.41 0.2

7 
 34 95 S

S 

2

0 
S D 1 1650 0.73 0.39 0.2

5 
33 95 S

S 

2

0 
F S

L 
2 1650 0.83 0.40 0.2

7 
 34 95 S

S 

2

0 
S D 2 1650 0.76 0.38 0.2

5                        
35 95 S

S 

2

0 
S H

L 
1 0000 0.67 0.45 0.2

7 
 36 95 S

S 

2

0 
S S

L 
1 0000 0.78 0.57 0.3

3 
35 95 S

S 

2

0 
S H

L 
2 0000 0.66 0.42 0.2

7 
 36 95 S

S 

2

0 
S S

L 
2 0000 0.65 0.54 0.3

3 
35 95 S

S 

2

0 
S H

L 
1 0015 0.66 0.48 0.2

8 
 36 95 S

S 

2

0 
S S

L 
1 0015 0.70 0.56 0.3

2 
35 95 S

S 

2

0 
S H

L 
2 0015 0.69 0.46 0.2

8 
 36 95 S

S 

2

0 
S S

L 
2 0015 0.73 0.55 0.3

2 
35 95 S

S 

2

0 
S H

L 
1 0036 0.64 0.58 0.3

2 
 36 95 S

S 

2

0 
S S

L 
1 0036 0.71 0.65 0.3

6 
35 95 S

S 

2

0 
S H

L 
2 0036 0.70 0.56 0.3

2 
 36 95 S

S 

2

0 
S S

L 
2 0036 0.68 0.62 0.3

6 
35 95 S

S 

2

0 
S H

L 
1 0090 0.63 0.54 0.3

1 
 36 95 S

S 

2

0 
S S

L 
1 0090 0.69 0.58 0.3

3 
35 95 S

S 

2

0 
S H

L 
2 0090 0.72 0.54 0.3

1 
 36 95 S

S 

2

0 
S S

L 
2 0090 0.69 0.57 0.3

3 
35 95 S

S 

2

0 
S H

L 
1 0180 0.71 0.48 0.2

9 
 36 95 S

S 

2

0 
S S

L 
1 0180 0.75 0.53 0.3

1 
35 95 S

S 

2

0 
S H

L 
2 0180 0.68 0.49 0.2

9 
 36 95 S

S 

2

0 
S S

L 
2 0180 0.69 0.53 0.3

1 
35 95 S

S 

2

0 
S H

L 
1 0300 0.68 0.45 0.2

7 
 36 95 S

S 

2

0 
S S

L 
1 0300 0.77 0.47 0.2

9 
35 95 S

S 

2

0 
S H

L 
2 0300 0.72 0.44 0.2

7 
 36 95 S

S 

2

0 
S S

L 
2 0300 0.71 0.47 0.2

9 
35 95 S

S 

2

0 
S H

L 
1 0450 0.68 0.41 0.2

6 
 36 95 S

S 

2

0 
S S

L 
1 0450 0.83 0.44 0.2

8 
35 95 S

S 

2

0 
S H

L 
2 0450 0.70 0.43 0.2

6 
 36 95 S

S 

2

0 
S S

L 
2 0450 0.72 0.43 0.2

8 
35 95 S

S 

2

0 
S H

L 
1 0750 0.70 0.38 0.2

5 
 36 95 S

S 

2

0 
S S

L 
1 0750 0.77 0.40 0.2

6 
35 95 S

S 

2

0 
S H

L 
2 0750 0.74 0.38 0.2

5 
 36 95 S

S 

2

0 
S S

L 
2 0750 0.76 0.40 0.2

6 
35 95 S

S 

2

0 
S H

L 
1 1200 0.69 0.36 0.2

4 
 36 95 S

S 

2

0 
S S

L 
1 1200 0.76 0.38 0.2

5 
35 95 S

S 

2

0 
S H

L 
2 1200 0.71 0.39 0.2

4 
 36 95 S

S 

2

0 
S S

L 
2 1200 0.72 0.38 0.2

5 
35 95 S

S 

2

0 
S H

L 
1 1650 0.70 0.37 0.2

4 
 36 95 S

S 

2

0 
S S

L 
1 1650 0.85 0.37 0.2

5 
35 95 S

S 

2

0 
S H

L 
2 1650 0.70 0.37 0.2

4 
 36 95 S

S 

2

0 
S S

L 
2 1650 0.81 0.37 0.2

5  
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No Mix Label R # MPD DF20 F6

0 

 No Mix Label R # MPD DF20 F6

0 37 95 S

S 
0 S D 1 0000 0.97 0.68 0.4

2 
 38 95 S

S 

1

0 
S D 1 0000 0.99 0.67 0.4

0 
37 95 S

S 
0 S D 2 0000 1.14 0.64 0.4

2 
 38 95 S

S 

1

0 
S D 2 0000 0.93 0.64 0.4

0 
37 95 S

S 
0 S D 1 0015 0.89 0.68 0.4

0 
 38 95 S

S 

1

0 
S D 1 0015 0.94 0.64 0.3

9 
37 95 S

S 
0 S D 2 0015 0.93 0.65 0.4

0 
 38 95 S

S 

1

0 
S D 2 0015 0.91 0.62 0.3

9 
37 95 S

S 
0 S D 1 0036 1.02 0.64 0.4

0 
 38 95 S

S 

1

0 
S D 1 0036 0.96 0.58 0.3

6 
37 95 S

S 
0 S D 2 0036 0.98 0.62 0.4

0 
 38 95 S

S 

1

0 
S D 2 0036 0.93 0.56 0.3

6 
37 95 S

S 
0 S D 1 0090 1.01 0.55 0.3

5 
 38 95 S

S 

1

0 
S D 1 0090 0.95 0.53 0.3

4 
37 95 S

S 
0 S D 2 0090 0.96 0.53 0.3

5 
 38 95 S

S 

1

0 
S D 2 0090 0.93 0.51 0.3

4 
37 95 S

S 
0 S D 1 0180 0.98 0.52 0.3

3 
 38 95 S

S 

1

0 
S D 1 0180 0.99 0.49 0.3

2 
37 95 S

S 
0 S D 2 0180 0.97 0.50 0.3

3 
 38 95 S

S 

1

0 
S D 2 0180 1.00 0.48 0.3

2 
37 95 S

S 
0 S D 1 0300 1.02 0.47 0.3

1 
 38 95 S

S 

1

0 
S D 1 0300 0.99 0.43 0.2

9 
37 95 S

S 
0 S D 2 0300 0.98 0.45 0.3

1 
 38 95 S

S 

1

0 
S D 2 0300 0.97 0.43 0.2

9 
37 95 S

S 
0 S D 1 0450 1.01 0.42 0.2

9 
 38 95 S

S 

1

0 
S D 1 0450 1.03 0.40 0.2

8 
37 95 S

S 
0 S D 2 0450 1.05 0.41 0.2

9 
 38 95 S

S 

1

0 
S D 2 0450 0.98 0.39 0.2

8 
37 95 S

S 
0 S D 1 0750 1.03 0.41 0.2

8 
 38 95 S

S 

1

0 
S D 1 0750 1.01 0.37 0.2

6 
37 95 S

S 
0 S D 2 0750 1.05 0.39 0.2

8 
 38 95 S

S 

1

0 
S D 2 0750 0.95 0.36 0.2

6 
37 95 S

S 
0 S D 1 1200 1.08 0.32 0.2

5 
 38 95 S

S 

1

0 
S D 1 1200 0.94 0.35 0.2

6 
37 95 S

S 
0 S D 2 1200 1.12 0.32 0.2

5 
 38 95 S

S 

1

0 
S D 2 1200 0.98 0.36 0.2

6 
37 95 S

S 
0 S D 1 1650 0.99 0.34 0.2

5 
 38 95 S

S 

1

0 
S D 1 1650 0.95 0.35 0.2

5 
37 95 S

S 
0 S D 2 1650 0.98 0.33 0.2

5 
 38 95 S

S 

1

0 
S D 2 1650 0.94 0.35 0.2

5                        
39 95 S

S 

4

0 
S D 1 0000 0.77 0.72 0.3

9 
 40 95 S

S 

7

0 
S D 1 0000 0.97 0.74 0.4

2 
39 95 S

S 

4

0 
S D 2 0000 0.78 0.64 0.3

9 
 40 95 S

S 

7

0 
S D 2 0000 0.90 0.67 0.4

2 
39 95 S

S 

4

0 
S D 1 0015 0.73 0.68 0.3

8 
 40 95 S

S 

7

0 
S D 1 0015 0.79 0.65 0.3

7 
39 95 S

S 

4

0 
S D 2 0015 0.71 0.66 0.3

8 
 40 95 S

S 

7

0 
S D 2 0015 0.78 0.62 0.3

7 
39 95 S

S 

4

0 
S D 1 0036 0.71 0.63 0.3

5 
 40 95 S

S 

7

0 
S D 1 0036 0.83 0.63 0.3

7 
39 95 S

S 

4

0 
S D 2 0036 0.70 0.60 0.3

5 
 40 95 S

S 

7

0 
S D 2 0036 0.80 0.61 0.3

7 
39 95 S

S 

4

0 
S D 1 0090 0.75 0.56 0.3

3 
 40 95 S

S 

7

0 
S D 1 0090 0.86 0.58 0.3

5 
39 95 S

S 

4

0 
S D 2 0090 0.68 0.55 0.3

3 
 40 95 S

S 

7

0 
S D 2 0090 0.83 0.57 0.3

5 
39 95 S

S 

4

0 
S D 1 0180 0.71 0.53 0.3

1 
 40 95 S

S 

7

0 
S D 1 0180 0.85 0.58 0.3

5 
39 95 S

S 

4

0 
S D 2 0180 0.72 0.52 0.3

1 
 40 95 S

S 

7

0 
S D 2 0180 0.87 0.55 0.3

5 
39 95 S

S 

4

0 
S D 1 0300 0.79 0.49 0.3

0 
 40 95 S

S 

7

0 
S D 1 0300 0.89 0.53 0.3

3 
39 95 S

S 

4

0 
S D 2 0300 0.76 0.47 0.3

0 
 40 95 S

S 

7

0 
S D 2 0300 0.89 0.53 0.3

3 
39 95 S

S 

4

0 
S D 1 0450 0.76 0.47 0.2

9 
 40 95 S

S 

7

0 
S D 1 0450 0.89 0.51 0.3

2 
39 95 S

S 

4

0 
S D 2 0450 0.77 0.45 0.2

9 
 40 95 S

S 

7

0 
S D 2 0450 0.83 0.51 0.3

2 
39 95 S

S 

4

0 
S D 1 0750 0.80 0.45 0.2

9 
 40 95 S

S 

7

0 
S D 1 0750 0.85 0.50 0.3

2 
39 95 S

S 

4

0 
S D 2 0750 0.83 0.44 0.2

9 
 40 95 S

S 

7

0 
S D 2 0750 0.86 0.49 0.3

2 
39 95 S

S 

4

0 
S D 1 1200 0.75 0.42 0.2

7 
 40 95 S

S 

7

0 
S D 1 1200 0.89 0.51 0.3

2 
39 95 S

S 

4

0 
S D 2 1200 0.76 0.41 0.2

7 
 40 95 S

S 

7

0 
S D 2 1200 0.88 0.48 0.3

2 
39 95 S

S 

4

0 
S D 1 1650 0.80 0.40 0.2

6 
 40 95 S

S 

7

0 
S D 1 1650 0.91 0.51 0.3

2 
39 95 S

S 

4

0 
S D 2 1650 0.84 0.39 0.2

6 
 40 95 S

S 

7

0 
S D 2 1650 0.89 0.50 0.3

2  
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No Mix Label R # MPD DF20 F6

0 

 No Mix Label R # MPD DF20 F6

0 41 95 Q 1

0 
S D 1 0000 0.77 0.68 0.3

8 
 42 95 Q 4

0 
S D 1 0000 0.99 0.71 0.4

3 
41 95 Q 1

0 
S D 2 0000 0.78 0.64 0.3

8 
 42 95 Q 4

0 
S D 2 0000 1.00 0.68 0.4

3 
41 95 Q 1

0 
S D 1 0015 0.70 0.68 0.3

8 
 42 95 Q 4

0 
S D 1 0015 0.93 0.72 0.4

2 
41 95 Q 1

0 
S D 2 0015 0.71 0.67 0.3

8 
 42 95 Q 4

0 
S D 2 0015 0.96 0.69 0.4

2 
41 95 Q 1

0 
S D 1 0036 0.71 0.63 0.3

5 
 42 95 Q 4

0 
S D 1 0036 0.98 0.67 0.4

0 
41 95 Q 1

0 
S D 2 0036 0.76 0.59 0.3

5 
 42 95 Q 4

0 
S D 2 0036 0.93 0.64 0.4

0 
41 95 Q 1

0 
S D 1 0090 0.84 0.61 0.3

6 
 42 95 Q 4

0 
S D 1 0090 0.94 0.62 0.3

8 
41 95 Q 1

0 
S D 2 0090 0.77 0.59 0.3

6 
 42 95 Q 4

0 
S D 2 0090 0.95 0.60 0.3

8 
41 95 Q 1

0 
S D 1 0180 0.82 0.54 0.3

3 
 42 95 Q 4

0 
S D 1 0180 1.01 0.59 0.3

7 
41 95 Q 1

0 
S D 2 0180 0.80 0.53 0.3

3 
 42 95 Q 4

0 
S D 2 0180 0.99 0.58 0.3

7 
41 95 Q 1

0 
S D 1 0300 0.78 0.48 0.3

0 
 42 95 Q 4

0 
S D 1 0300 1.05 0.60 0.3

7 
41 95 Q 1

0 
S D 2 0300 0.77 0.47 0.3

0 
 42 95 Q 4

0 
S D 2 0300 1.01 0.56 0.3

7 
41 95 Q 1

0 
S D 1 0450 0.82 0.45 0.2

9 
 42 95 Q 4

0 
S D 1 0450 1.06 0.51 0.3

4 
41 95 Q 1

0 
S D 2 0450 0.79 0.44 0.2

9 
 42 95 Q 4

0 
S D 2 0450 1.04 0.50 0.3

4 
41 95 Q 1

0 
S D 1 0750 0.81 0.42 0.2

7 
 42 95 Q 4

0 
S D 1 0750 1.05 0.47 0.3

3 
41 95 Q 1

0 
S D 2 0750 0.77 0.43 0.2

7 
 42 95 Q 4

0 
S D 2 0750 1.02 0.47 0.3

3 
41 95 Q 1

0 
S D 1 1200 0.80 0.39 0.2

6 
 42 95 Q 4

0 
S D 1 1200 1.20 0.45 0.3

2 
41 95 Q 1

0 
S D 2 1200 0.85 0.38 0.2

6 
 42 95 Q 4

0 
S D 2 1200 1.22 0.45 0.3

2 
41 95 Q 1

0 
S D 1 1650 0.86 0.36 0.2

5 
 42 95 Q 4

0 
S D 1 1650 1.15 0.44 0.3

1 
41 95 Q 1

0 
S D 2 1650 0.87 0.36 0.2

5 
 42 95 Q 4

0 
S D 2 1650 1.17 0.43 0.3

1                        
43 95 Q 7

0 
S D 1 0000 1.17 0.70 0.4

5 
 44 95 S

S 

1

0 
C D 1 0000 1.01 0.65 0.4

0 
43 95 Q 7

0 
S D 2 0000 1.16 0.69 0.4

5 
 44 95 S

S 

1

0 
C D 2 0000 1.01 0.63 0.4

0 
43 95 Q 7

0 
S D 1 0015 0.95 0.74 0.4

3 
 44 95 S

S 

1

0 
C D 1 0015 0.96 0.64 0.3

9 
43 95 Q 7

0 
S D 2 0015 0.96 0.70 0.4

3 
 44 95 S

S 

1

0 
C D 2 0015 0.97 0.60 0.3

9 
43 95 Q 7

0 
S D 1 0036 0.95 0.69 0.4

2 
 44 95 S

S 

1

0 
C D 1 0036 0.92 0.62 0.3

8 
43 95 Q 7

0 
S D 2 0036 0.96 0.68 0.4

2 
 44 95 S

S 

1

0 
C D 2 0036 0.92 0.61 0.3

8 
43 95 Q 7

0 
S D 1 0090 1.01 0.62 0.3

8 
 44 95 S

S 

1

0 
C D 1 0090 0.98 0.54 0.3

4 
43 95 Q 7

0 
S D 2 0090 0.97 0.60 0.3

8 
 44 95 S

S 

1

0 
C D 2 0090 0.92 0.52 0.3

4 
43 95 Q 7

0 
S D 1 0180 1.00 0.59 0.3

7 
 44 95 S

S 

1

0 
C D 1 0180 0.97 0.50 0.3

3 
43 95 Q 7

0 
S D 2 0180 0.98 0.58 0.3

7 
 44 95 S

S 

1

0 
C D 2 0180 0.97 0.49 0.3

3 
43 95 Q 7

0 
S D 1 0300 0.99 0.60 0.3

7 
 44 95 S

S 

1

0 
C D 1 0300 0.96 0.44 0.3

0 
43 95 Q 7

0 
S D 2 0300 1.04 0.56 0.3

7 
 44 95 S

S 

1

0 
C D 2 0300 0.96 0.44 0.3

0 
43 95 Q 7

0 
S D 1 0450 1.03 0.60 0.3

7 
 44 95 S

S 

1

0 
C D 1 0450 0.96 0.42 0.2

8 
43 95 Q 7

0 
S D 2 0450 0.96 0.59 0.3

7 
 44 95 S

S 

1

0 
C D 2 0450 1.01 0.40 0.2

8 
43 95 Q 7

0 
S D 1 0750 1.04 0.57 0.3

7 
 44 95 S

S 

1

0 
C D 1 0750 0.94 0.38 0.2

7 
43 95 Q 7

0 
S D 2 0750 1.07 0.56 0.3

7 
 44 95 S

S 

1

0 
C D 2 0750 0.98 0.38 0.2

7 
43 95 Q 7

0 
S D 1 1200 1.11 0.51 0.3

5 
 44 95 S

S 

1

0 
C D 1 1200 0.93 0.33 0.2

4 
43 95 Q 7

0 
S D 2 1200 1.14 0.51 0.3

5 
 44 95 S

S 

1

0 
C D 2 1200 0.98 0.33 0.2

4 
43 95 Q 7

0 
S D 1 1650 1.20 0.54 0.3

6 
 44 95 S

S 

1

0 
C D 1 1650 1.01 0.33 0.2

5 
43 95 Q 7

0 
S D 2 1650 1.17 0.53 0.3

6 
 44 95 S

S 

1

0 
C D 2 1650 1.07 0.32 0.2

5  
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No Mix Label R # MPD DF20 F6

0 

 No Mix Label R # MPD DF20 F6

0 45 95 S

S 

1

0 

C S

L 

1 0000 1.18 0.84 0.4

9 
 46 95 S

S 

1

0 

C H

L 

1 0000 0.98 0.74 0.4

3 45 95 S

S 

1

0 

C S

L 

2 0000 1.22 0.72 0.4

9 
 46 95 S

S 

1

0 

C H

L 

2 0000 0.97 0.70 0.4

3 45 95 S

S 

1

0 

C S

L 

1 0015 1.34 0.73 0.4

7 
 46 95 S

S 

1

0 

C H

L 

1 0015 0.96 0.69 0.4

1 45 95 S

S 

1

0 

C S

L 

2 0015 1.46 0.69 0.4

7 
 46 95 S

S 

1

0 

C H

L 

2 0015 0.96 0.66 0.4

1 45 95 S

S 

1

0 

C S

L 

1 0036 1.38 0.65 0.4

3 
 46 95 S

S 

1

0 

C H

L 

1 0036 1.02 0.62 0.3

8 45 95 S

S 

1

0 

C S

L 

2 0036 1.40 0.62 0.4

3 
 46 95 S

S 

1

0 

C H

L 

2 0036 0.98 0.60 0.3

8 45 95 S

S 

1

0 

C S

L 

1 0090 1.45 0.60 0.4

1 
 46 95 S

S 

1

0 

C H

L 

1 0090 0.97 0.60 0.3

7 45 95 S

S 

1

0 

C S

L 

2 0090 1.52 0.57 0.4

1 
 46 95 S

S 

1

0 

C H

L 

2 0090 0.99 0.57 0.3

7 45 95 S

S 

1

0 

C S

L 

1 0180 1.46 0.53 0.3

6 
 46 95 S

S 

1

0 

C H

L 

1 0180 1.02 0.53 0.3

4 45 95 S

S 

1

0 

C S

L 

2 0180 1.45 0.49 0.3

6 
 46 95 S

S 

1

0 

C H

L 

2 0180 1.05 0.51 0.3

4 45 95 S

S 

1

0 

C S

L 

1 0300 1.45 0.47 0.3

4 
 46 95 S

S 

1

0 

C H

L 

1 0300 0.97 0.47 0.3

1 45 95 S

S 

1

0 

C S

L 

2 0300 1.48 0.45 0.3

4 
 46 95 S

S 

1

0 

C H

L 

2 0300 0.97 0.45 0.3

1 45 95 S

S 

1

0 

C S

L 

1 0450 1.42 0.40 0.3

0 
 46 95 S

S 

1

0 

C H

L 

1 0450 0.96 0.44 0.2

9 45 95 S

S 

1

0 

C S

L 

2 0450 1.43 0.39 0.3

0 
 46 95 S

S 

1

0 

C H

L 

2 0450 0.98 0.42 0.2

9 45 95 S

S 

1

0 

C S

L 

1 0750 1.45 0.35 0.2

7 
 46 95 S

S 

1

0 

C H

L 

1 0750 0.98 0.40 0.2

7 45 95 S

S 

1

0 

C S

L 

2 0750 1.52 0.34 0.2

7 
 46 95 S

S 

1

0 

C H

L 

2 0750 0.99 0.38 0.2

7 45 95 S

S 

1

0 

C S

L 

1 1200 1.47 0.31 0.2

5 
 46 95 S

S 

1

0 

C H

L 

1 1200 0.98 0.33 0.2

5 45 95 S

S 

1

0 

C S

L 

2 1200 1.47 0.29 0.2

5 
 46 95 S

S 

1

0 

C H

L 

2 1200 1.09 0.34 0.2

5 45 95 S

S 

1

0 

C S

L 

1 1650 1.56 0.30 0.2

5 
 46 96 S

S 

1

0 

C H

L 

1 1650 0.98 0.35 0.2

5 45 95 S

S 

1

0 

C S

L 

2 1650 1.56 0.30 0.2

5 
 46 96 S

S 

1

0 

C H

L 

2 1650 0.99 0.33 0.2

5                        
47 PFC  3

8 
 1 0000 2.43 0.58 0.4

4 
 48 PFC 64   1 0000 2.22 0.88 0.5

3 
47 PFC  3

8 
 2 0000 2.43 0.57 0.4

4 
 48 PFC 64   2 0000 2.24 0.58 0.5

3 
47 PFC  3

8 
 1 0015 2.41 0.63 0.4

7 
 48 PFC 64   1 0015 2.25 0.94 0.5

7 
47 PFC  3

8 
 2 0015 2.39 0.62 0.4

7 
 48 PFC 64   2 0015 2.23 0.65 0.5

7 
47 PFC  3

8 
 1 0036 2.54 0.63 0.4

7 
 48 PFC 64   1 0036 2.18 0.92 0.5

8 
47 PFC  3

8 
 2 0036 2.54 0.61 0.4

7 
 48 PFC 64   2 0036 2.14 0.73 0.5

8 
47 PFC  3

8 
 1 0090 2.43 0.56 0.4

4 
 48 PFC 64   1 0090 2.19 0.61 0.4

5 
47 PFC  3

8 
 2 0090 2.56 0.59 0.4

4 
 48 PFC 64   2 0090 2.17 0.62 0.4

5 
47 PFC  3

8 
 1 0180 2.57 0.54 0.4

3 
 48 PFC 64   1 0180 2.24 0.61 0.4

6 
47 PFC  3

8 
 2 0180 2.56 0.58 0.4

3 
 48 PFC 64   2 0180 2.23 0.64 0.4

6 
47 PFC  3

8 
 1 0300 2.55 0.52 0.4

3 
 48 PFC 64   1 0300 2.33 0.61 0.4

5 
47 PFC  3

8 
 2 0300 2.47 0.59 0.4

3 
 48 PFC 64   2 0300 2.35 0.59 0.4

5 
47 PFC  3

8 
 1 0450 2.49 0.51 0.4

2 
 48 PFC 64   1 0450 2.36 0.52 0.4

0 
47 PFC  3

8 
 2 0450 2.54 0.57 0.4

2 
 48 PFC 64   2 0450 2.30 0.52 0.4

0 
47 PFC  3

8 
 1 0750 2.56 0.50 0.4

2 
 48 PFC 64   1 0750 2.31 0.53 0.4

1 
47 PFC  3

8 
 2 0750 2.61 0.57 0.4

2 
 48 PFC 64   2 0750 2.27 0.53 0.4

1 
47 PFC  3

8 
 1 1200 2.59 0.57 0.4

4 
 48 PFC 64   1 1200 2.28 0.55 0.4

0 
47 PFC  3

8 
 2 1200 2.57 0.57 0.4

4 
 48 PFC 64   2 1200 2.29 0.48 0.4

0 
47 PFC  3

8 
 1 1650 2.61 0.49 0.4

0 
 48 PFC 64   1 1650 2.24 0.48 0.3

8 
47 PFC  3

8 
 2 1650 2.70 0.54 0.4

0 
 48 PFC 64   2 1650 2.20 0.49 0.3

8  
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No Mix Label R # MPD DF20 F6

0 

 No Mix Label R # MPD DF20 F6

0 49 SMA  3

8 
 1 0000 1.79 0.40 0.3

1 
 50 SMA 64   1 0000 1.86 0.71 0.4

9 
49 SMA  3

8 
 2 0000 1.80 0.39 0.3

1 
 50 SMA 64   2 0000 1.89 0.67 0.4

9 
49 SMA  3

8 
 1 0015 1.65 0.40 0.3

1 
 50 SMA 64   1 0015 1.80 0.72 0.5

0 
49 SMA  3

8 
 2 0015 1.82 0.41 0.3

1 
 50 SMA 64   2 0015 1.80 0.70 0.5

0 
49 SMA  3

8 
 1 0036 1.83 0.54 0.3

9 
 50 SMA 64   1 0036 1.84 0.76 0.5

2 
49 SMA  3

8 
 2 0036 1.82 0.53 0.3

9 
 50 SMA 64   2 0036 1.76 0.74 0.5

2 
49 SMA  3

8 
 1 0090 1.86 0.66 0.4

6 
 50 SMA 64   1 0090 1.83 0.76 0.5

2 
49 SMA  3

8 
 2 0090 1.83 0.65 0.4

6 
 50 SMA 64   2 0090 1.78 0.75 0.5

2 
49 SMA  3

8 
 1 0180 1.84 0.67 0.4

7 
 50 SMA 64   1 0180 1.85 0.81 0.5

5 
49 SMA  3

8 
 2 0180 1.84 0.67 0.4

7 
 50 SMA 64   2 0180 1.78 0.78 0.5

5 
49 SMA  3

8 
 1 0300 1.81 0.64 0.4

6 
 50 SMA 64   1 0300 1.72 0.80 0.5

4 
49 SMA  3

8 
 2 0300 1.86 0.64 0.4

6 
 50 SMA 64   2 0300 1.71 0.78 0.5

4 
49 SMA  3

8 
 1 0450 1.79 0.63 0.4

5 
 50 SMA 64   1 0450 1.65 0.76 0.5

2 
49 SMA  3

8 
 2 0450 1.78 0.64 0.4

5 
 50 SMA 64   2 0450 1.70 0.75 0.5

2 
49 SMA  3

8 
 1 0750 1.82 0.63 0.4

5 
 50 SMA 64   1 0750 1.70 0.72 0.5

0 
49 SMA  3

8 
 2 0750 1.80 0.62 0.4

5 
 50 SMA 64   2 0750 1.69 0.72 0.5

0 
49 SMA  3

8 
 1 1200 1.78 0.64 0.4

5 
 50 SMA 64   1 1200 1.81 0.70 0.4

9 
49 SMA  3

8 
 2 1200 1.81 0.62 0.4

5 
 50 SMA 64   2 1200 1.79 0.70 0.4

9 
49 SMA  3

8 
 1 1650 1.85 0.64 0.4

5 
 50 SMA 64   1 1650 1.72 0.70 0.4

8 
49 SMA  3

8 
 2 1650 1.83 0.63 0.4

5 
 50 SMA 64   2 1650 1.70 0.69 0.4

8  
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Appendix E: Summary of the Laboratory Polishing Data and Model Parameters 

This appendix contains a summary of the laboratory polishing data, air content values and 

model parameters.  The summary of the laboratory polishing data and air content is 

shown in Table E 1 in the following order: sample number (No.), mix label, mean profile 

depth (MPD) data (minimum, maximum and range of the values per specific specimen), 

dynamic friction (DF20) data (minimum, maximum and range of the values per specific 

specimen), calibrated wet friction (F60) data (minimum, maximum and range of the 

values per specific specimen) and air content information (Va) (for the “corner” core and 

for the “side” core).  The mix label consists of the mixture nominal maximum aggregate 

size (NMAS, mm), friction aggregate type (FAT), friction aggregate content (FAC), 

aggregate gradation type (G), and common aggregate type (CAT).  

 

The summary of the model parameters is shown in Table E 2 in the following order: 

sample number (No.), mix label, parameters of the model (xo, x1, a0, a1, a2, a3, a4, a5), 

statistical information about the model (R
2
, SSE and SST) and F60 values at the wheel 

passes corresponding to  xo and  to x1 levels.   

 

Samples of the plant produced mixes tested in the lab (PFC and SMA) are identified by 

the mix type and sample height (reported in mm). 
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Table E 1. Summary of the laboratory polishing data and air content information  

No. Mix Label MPD, mm DF20 F60 Va, % 

1 19 Q 20 C D 2.05 2.42 0.37 0.40 0.82 0.42 0.32 0.57 0.25 13.7 12.5 

2 19 Q 20 C HL 1.19 1.45 0.26 0.41 0.78 0.36 0.31 0.50 0.19 12.7 10.9 

3 19 Q 20 C SL 1.59 1.89 0.30 0.31 0.70 0.39 0.26 0.48 0.22 12.8 12.6 

4 19 Q 20 F D 0.91 1.71 0.80 0.43 0.81 0.38 0.33 0.49 0.16 15.3 14.6 

5 19 Q 20 F HL 0.65 1.34 0.69 0.38 0.79 0.42 0.29 0.44 0.16 12.5 15.0 

6 19 Q 20 F SL 0.69 1.52 0.83 0.35 0.85 0.50 0.28 0.43 0.15 15.1 13.9 

7 19 Q 20 S D 1.28 1.55 0.27 0.44 0.80 0.36 0.33 0.52 0.19 15.0 14.1 

8 19 Q 20 S HL 1.25 1.45 0.20 0.34 0.75 0.41 0.26 0.48 0.22 14.6 15.6 

9 19 Q 20 S SL 1.38 1.59 0.22 0.32 0.77 0.45 0.26 0.51 0.25 17.1 17.3 

10 19 SS 20 C D 1.58 1.78 0.20 0.36 0.73 0.38 0.29 0.49 0.20 13.2 13.0 

11 19 SS 20 C HL 1.76 2.02 0.26 0.35 0.66 0.32 0.29 0.47 0.18 13.7 14.9 

12 19 SS 20 C SL 1.34 1.48 0.13 0.43 0.80 0.37 0.32 0.49 0.17 12.6 12.2 

13 19 SS 20 F D 0.71 1.14 0.43 0.33 0.67 0.33 0.25 0.37 0.12 13.6 13.6 

14 19 SS 20 F HL 0.69 1.43 0.75 0.47 0.79 0.32 0.34 0.46 0.12 14.0 12.8 

15 19 SS 20 F SL 1.05 2.31 1.26 0.42 0.83 0.41 0.34 0.50 0.16 13.4 14.2 

16 19 SS 20 S D 1.30 1.49 0.19 0.37 0.67 0.31 0.29 0.45 0.16 14.7 14.4 

17 19 SS 20 S HL 1.25 1.42 0.17 0.38 0.70 0.32 0.29 0.46 0.17 14.7 13.8 

18 19 SS 20 S SL 1.06 1.20 0.14 0.38 0.72 0.34 0.28 0.45 0.17 15.3 14.7 

19 95 Q 20 C D 0.97 1.18 0.22 0.36 0.76 0.41 0.26 0.46 0.19 13.6 13.2 

20 95 Q 20 C HL 0.75 0.90 0.15 0.41 0.65 0.24 0.28 0.37 0.10 15.2 15.3 

21 95 Q 20 C SL 0.86 1.05 0.20 0.34 0.58 0.25 0.25 0.35 0.10 17.2 16.8 

22 95 Q 20 F D 0.34 0.68 0.34 0.36 0.70 0.35 0.23 0.30 0.07 16.7 15.9 

23 95 Q 20 F HL 0.31 0.80 0.49 0.33 0.69 0.35 0.23 0.31 0.08 17.9 16.8 

24 95 Q 20 F SL 0.42 0.88 0.46 0.28 0.67 0.39 0.22 0.33 0.11 17.4 16.1 

25 95 Q 20 S D 0.64 0.78 0.15 0.36 0.73 0.37 0.24 0.40 0.15 18.5 16.9 

26 95 Q 20 S HL 0.94 1.08 0.14 0.39 0.68 0.30 0.28 0.42 0.14 17.5 19.0 

27 95 Q 20 S SL 0.68 0.84 0.16 0.34 0.67 0.33 0.24 0.37 0.13 17.8 16.8 

28 95 SS 20 C D 0.75 1.00 0.25 0.38 0.71 0.34 0.27 0.41 0.14 15.3 14.7 

29 95 SS 20 C HL 0.79 1.07 0.27 0.39 0.71 0.31 0.28 0.40 0.13 15.4 13.9 

30 95 SS 20 C SL 0.93 1.08 0.16 0.40 0.64 0.24 0.28 0.39 0.10 18.9 17.9 

                 

                 

                 

                 



 

 

219 

No. Mix Label MPD, mm DF20 F60 Va, % 

31 95 SS 20 F D 0.39 0.75 0.36 0.40 0.75 0.36 0.26 0.32 0.06 17.9 17.1 

32 95 SS 20 F HL 0.33 0.54 0.21 0.34 0.61 0.28 0.21 0.26 0.05 13.9 12.0 

33 95 SS 20 F SL 0.35 0.83 0.48 0.40 0.75 0.35 0.23 0.34 0.11 16.2 16.1 

34 95 SS 20 S D 0.63 0.81 0.18 0.38 0.70 0.33 0.25 0.37 0.12 17.6 16.5 

35 95 SS 20 S HL 0.63 0.74 0.11 0.36 0.58 0.22 0.24 0.32 0.08 17.2 16.9 

36 95 SS 20 S SL 0.65 0.85 0.19 0.37 0.65 0.29 0.25 0.36 0.11 16.3 16.6 

37 95 SS 0 S D 0.89 1.14 0.25 0.32 0.66 0.34 0.25 0.42 0.17 16.6 17.5 

38 95 SS 10 S D 0.91 1.03 0.13 0.35 0.65 0.30 0.25 0.40 0.15 16.5 17.2 

39 95 SS 40 S D 0.68 0.84 0.16 0.40 0.68 0.28 0.26 0.39 0.12 16.5 18.3 

40 95 SS 70 S D 0.78 0.97 0.19 0.49 0.70 0.21 0.32 0.42 0.11 14.1 13.1 

41 95 Q 10 S D 0.70 0.87 0.17 0.36 0.67 0.31 0.25 0.38 0.13 19.2 19.4 

42 95 Q 40 S D 0.93 1.22 0.30 0.44 0.70 0.26 0.31 0.43 0.12 17.7 17.6 

43 95 Q 70 S D 0.95 1.20 0.26 0.51 0.72 0.21 0.35 0.45 0.10 16.5 16.4 

44 95 SS 10 C D 0.92 1.07 0.15 0.33 0.64 0.31 0.24 0.40 0.16 19.4 18.3 

45 95 SS 10 C SL 1.18 1.56 0.38 0.30 0.78 0.48 0.25 0.49 0.25 17.2 20.2 

46 95 SS 10 C HL 0.96 1.09 0.14 0.33 0.72 0.39 0.25 0.43 0.19 15.3 15.2 

47 PFC  38  2.40 2.65 0.25 0.52 0.62 0.11 0.40 0.47 0.06 23.8 24.6 

48 PFC  64  2.16 2.34 0.18 0.49 0.82 0.34 0.38 0.58 0.20 21.9 23.3 

49 SMA  38  1.73 1.85 0.11 0.39 0.67 0.27 0.31 0.47 0.16 15.0 15.1 

50 SMA  64  1.68 1.87 0.19 0.69 0.80 0.11 0.48 0.55 0.07 12.6 12.7 
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Table E 2. Summary of the model parameters  

No Mix Label x0 x1 a0 a1 a2 a3 a4 a5 R
2
 SSE SST F60@x0 F60@x1 

1 19 Q 20 C D 0.89 165 0.52 0.20 -0.12 -0.02 -0.05 0.59 0.99 0.00 0.06 0.59 0.33 

2 19 Q 20 C HL 0.99 165 0.43 0.08 0.13 -0.13 -0.04 0.51 0.97 0.00 0.03 0.51 0.32 

3 19 Q 20 C SL 0.00 191 0.48 72 -47039 -1179 -0.04 0.50 0.86 0.01 0.05 0.50 0.28 

4 19 Q 20 F D 0.00 180 0.46 57 -12262 -678 -0.04 0.52 0.98 0.00 0.03 0.52 0.33 

5 19 Q 20 F HL 2.61 167 0.40 0.00 0.04 -0.01 -0.03 0.47 0.96 0.00 0.03 0.47 0.30 

6 19 Q 20 F SL 0.00 180 0.43 25 -5030 -131 -0.03 0.45 0.96 0.00 0.03 0.45 0.28 

7 19 Q 20 S D 2.07 165 0.44 0.11 -0.04 0.00 -0.04 0.52 0.99 0.00 0.03 0.52 0.33 

8 19 Q 20 S HL 0.39 131 0.43 0.67 -1.46 0.74 -0.05 0.52 0.98 0.00 0.05 0.52 0.26 

9 19 Q 20 S SL 0.00 200 0.45 53 -7653 -255 -0.05 0.54 0.93 0.00 0.05 0.54 0.28 

10 19 SS 20 C D 2.23 165 0.48 0.00 0.02 -0.01 -0.04 0.50 0.97 0.00 0.05 0.50 0.30 

11 19 SS 20 C HL 2.66 165 0.43 0.00 0.04 -0.01 -0.04 0.51 0.77 0.01 0.04 0.51 0.33 

12 19 SS 20 C SL 0.00 165 0.49 19 -15894 -720 -0.03 0.49 0.96 0.00 0.03 0.49 0.33 

13 19 SS 20 F D 0.00 165 0.37 27 -25815 -358 -0.02 0.37 0.83 0.00 0.01 0.37 0.27 

14 19 SS 20 F HL 0.90 165 0.41 0.00 0.26 -0.20 -0.02 0.47 0.94 0.00 0.01 0.47 0.35 

15 19 SS 20 F SL 2.89 165 0.50 0.00 0.01 0.00 -0.03 0.52 0.98 0.00 0.03 0.52 0.35 

16 19 SS 20 S D 3.42 166 0.43 0.00 0.01 0.00 -0.03 0.46 0.97 0.00 0.03 0.46 0.29 

17 19 SS 20 S HL 0.01 168 0.46 6 -377 89 -0.03 0.48 0.92 0.00 0.03 0.48 0.30 

18 19 SS 20 S SL 2.10 165 0.37 0.00 0.07 -0.03 -0.04 0.47 0.97 0.00 0.03 0.47 0.28 

19 95 Q 20 C D 2.05 165 0.38 0.00 0.07 -0.02 -0.04 0.47 0.96 0.00 0.03 0.47 0.28 

20 95 Q 20 C HL 6.68 169 0.32 0.00 0.01 0.00 -0.03 0.41 0.94 0.00 0.01 0.41 0.28 

21 95 Q 20 C SL 5.74 165 0.33 0.01 0.00 0.00 -0.02 0.36 0.75 0.00 0.01 0.36 0.27 

22 95 Q 20 F D 2.37 165 0.28 0.00 0.02 -0.01 -0.01 0.32 0.76 0.00 0.00 0.32 0.25 

23 95 Q 20 F HL 2.46 165 0.26 0.00 0.03 -0.01 -0.01 0.32 0.50 0.00 0.01 0.32 0.26 

24 95 Q 20 F SL 2.75 165 0.30 0.00 0.03 -0.01 -0.02 0.37 0.80 0.00 0.01 0.37 0.24 

25 95 Q 20 S D 2.12 165 0.35 0.00 0.04 -0.02 -0.03 0.41 0.96 0.00 0.02 0.41 0.25 

26 95 Q 20 S HL 5.80 163 0.40 0.00 0.00 0.00 -0.03 0.43 0.95 0.00 0.03 0.43 0.28 

27 95 Q 20 S SL 3.51 150 0.35 0.00 0.01 0.00 -0.02 0.38 0.88 0.00 0.02 0.38 0.26 

28 95 SS 20 C D 6.77 165 0.39 0.00 0.00 0.00 -0.03 0.43 0.97 0.00 0.02 0.43 0.28 

29 95 SS 20 C HL 5.57 129 0.37 0.00 0.00 0.00 -0.03 0.41 0.98 0.00 0.02 0.41 0.28 

30 95 SS 20 C SL 7.26 165 0.35 0.00 0.00 0.00 -0.02 0.41 0.80 0.00 0.01 0.41 0.29 

31 95 SS 20 F D 2.41 165 0.31 0.00 0.01 0.00 -0.01 0.33 0.80 0.00 0.00 0.33 0.27 

32 95 SS 20 F HL 3.17 150 0.21 0.00 0.02 0.00 -0.01 0.27 0.80 0.00 0.00 0.27 0.22 
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No Mix Label x0 x1 a0 a1 a2 a3 a4 a5 R2 SSE SST F60@x0 F60@x1 

33 95 SS 20 F SL 2.23 165 0.23 0.00 0.09 -0.03 -0.02 0.37 0.90 0.00 0.01 0.37 0.28 

34 95 SS 20 S D 6.30 165 0.34 0.00 0.00 0.00 -0.03 0.38 0.98 0.00 0.01 0.38 0.26 

35 95 SS 20 S HL 6.56 109 0.29 0.00 0.00 0.00 -0.02 0.34 0.96 0.00 0.01 0.34 0.24 

36 95 SS 20 S SL 5.99 120 0.32 0.00 0.00 0.00 -0.02 0.37 0.99 0.00 0.01 0.37 0.25 

37 95 SS 0 S D 0.00 146 0.42 31 -6991 6720 -0.04 0.45 0.99 0.00 0.04 0.45 0.25 

38 95 SS 10 S D 0.01 96 0.40 9 -1008 745 -0.04 0.42 1.00 0.00 0.03 0.42 0.25 

39 95 SS 40 S D 1.73 152 0.39 0.11 -0.14 0.04 -0.02 0.37 1.00 0.00 0.02 0.37 0.26 

40 95 SS 70 S D 0.91 150 0.42 0.16 -0.49 0.29 -0.01 0.38 0.97 0.00 0.01 0.38 0.31 

41 95 Q 10 S D 0.00 166 0.38 45 -16025 -1002 -0.03 0.41 0.97 0.00 0.02 0.41 0.25 

42 95 Q 40 S D 0.24 165 0.43 0.24 -0.83 0.38 -0.02 0.44 0.97 0.00 0.02 0.44 0.31 

43 95 Q 70 S D 6.63 120 0.44 0.00 0.00 0.00 -0.01 0.39 0.97 0.00 0.01 0.39 0.36 

44 95 SS 10 C D 0.00 128 0.40 37 -9023 9884 -0.04 0.43 0.99 0.00 0.03 0.43 0.25 

45 95 SS 10 C SL 0.00 125 0.49 49 -14178 58362 -0.06 0.53 0.99 0.00 0.07 0.53 0.25 

46 95 SS 10 C HL 0.00 137 0.43 43 -17144 240 -0.04 0.45 0.99 0.00 0.04 0.45 0.25 

47 PFC 38  6.97 167 0.43 0.03 -0.01 0.00 -0.01 0.44 0.86 0.00 0.00 0.41 0.41 

48 PFC 64  7.46 165 0.52 0.06 -0.02 0.00 -0.02 0.49 0.96 0.05 0.00 0.39 0.39 

49 SMA 38  7.12 75 0.30 0.00 0.01 0.00 -0.01 0.48 0.99 0.03 0.00 0.45 0.45 

50 SMA 64  15.0 169 0.49 0.00 0.00 0.00 -0.02 0.56 0.79 0.00 0.00 0.49 0.49 
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Appendix F: Summary of the Friction Predictive Model Development  

The ANOVA tables and estimates for six parameters (x0, x1, a0 – a3) of the proposed polishing 

model are presented on the following six pages. 

 
 
Dependent Variable: x0 
                                       Sum of 
 Source                     DF        Squares    Mean Square   F Value   Pr > F 
 Model                      10    168.6978644     16.8697864      6.96   <.0001 
 Error                      35     84.8771269      2.4250608 
 Corrected Total            45    253.5749913 
 
               R-Square     Coeff Var      Root MSE       X0 Mean 
               0.665278      64.87411      1.557261      2.400435 
 
 Source                     DF      Type I SS    Mean Square   F Value   Pr > F 
 NM                          1     44.3668754     44.3668754     18.30   0.0001 
 FAT                         1      0.2072733      0.2072733      0.09   0.7717 
 FAC                         4    104.6480171     26.1620043     10.79   <.0001 
 G                           2     17.6314588      8.8157294      3.64   0.0368 
 CAT                         2      1.8442398      0.9221199      0.38   0.6865 
 
 Source                     DF    Type III SS    Mean Square   F Value   Pr > F 
 NM                          1     95.3226778     95.3226778     39.31   <.0001 
 FAT                         1      5.5157114      5.5157114      2.27   0.1405 
 FAC                         4    107.4755671     26.8688918     11.08   <.0001 
 G                           2     17.5855641      8.7927821      3.63   0.0371 
 CAT                         2      1.8442398      0.9221199      0.38   0.6865 
 
                                            Standard 
     Parameter            Estimate             Error    t Value    Pr > |t| 
 
     Intercept         4.210731119 B      1.27297592       3.31      0.0022 
     NM        19     -3.254444444 B      0.51908689      -6.27      <.0001 
     NM        95      0.000000000 B       .                .         . 
     FAT       Q      -0.716709256 B      0.47522968      -1.51      0.1405 
     FAT       SS      0.000000000 B       .                .         . 
     FAC       0      -4.128354628 B      1.92199167      -2.15      0.0387 
     FAC       10     -4.149552811 B      1.36423648      -3.04      0.0044 
     FAC       20      0.918896697 B      1.25118657       0.73      0.4676 
     FAC       40     -2.785000000 B      1.55726066      -1.79      0.0824 
     FAC       70      0.000000000 B       .                .         . 
     G         C       0.085982396 B      0.58439632       0.15      0.8839 
     G         F      -1.437425468 B      0.62330760      -2.31      0.0271 
     G         S       0.000000000 B       .                .         . 
     CAT       D      -0.082376491 B      0.59978251      -0.14      0.8915 
     CAT       HL      0.410000000 B      0.61080788       0.67      0.5065 
     CAT       SL      0.000000000 B       .                .         . 
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Dependent Variable: x1 
                                       Sum of 
 Source                     DF        Squares    Mean Square   F Value   Pr > F 
 Model                      10    10290.43817     1029.04382      4.23   0.0007 
 Error                      35     8524.54009      243.55829 
 Corrected Total            45    18814.97826 
 
               R-Square     Coeff Var      Root MSE       X1 Mean 
               0.546928      9.938977      15.60635      157.0217 
 
 Source                     DF      Type I SS    Mean Square   F Value   Pr > F 
 NM                          1    3896.049689    3896.049689     16.00   0.0003 
 FAT                         1    2109.563792    2109.563792      8.66   0.0057 
 FAC                         4    2456.665706     614.166426      2.52   0.0585 
 G                           2     814.052756     407.026378      1.67   0.2027 
 CAT                         2    1014.106224     507.053112      2.08   0.1399 
 
 Source                     DF    Type III SS    Mean Square   F Value   Pr > F 
 NM                          1    1444.000000    1444.000000      5.93   0.0201 
 FAT                         1    1489.338306    1489.338306      6.11   0.0184 
 FAC                         4    2292.555484     573.138871      2.35   0.0729 
 G                           2     882.967117     441.483559      1.81   0.1782 
 CAT                         2    1014.106224     507.053112      2.08   0.1399 
 
                                            Standard 
     Parameter            Estimate             Error    t Value    Pr > |t| 
 
     Intercept         128.8561023 B     12.75734597      10.10      <.0001 
     NM        19       12.6666667 B      5.20211803       2.43      0.0201 
     NM        95        0.0000000 B       .                .         . 
     FAT       Q        11.7771153 B      4.76259556       2.47      0.0184 
     FAT       SS        0.0000000 B       .                .         . 
     FAC       0        16.8885576 B     19.26156826       0.88      0.3866 
     FAC       10       -4.1597104 B     13.67192929      -0.30      0.7627 
     FAC       20       17.9853066 B     12.53898028       1.43      0.1603 
     FAC       40       23.5000000 B     15.60635410       1.51      0.1411 
     FAC       70        0.0000000 B       .                .         . 
     G         C         8.8634299 B      5.85662773       1.51      0.1392 
     G         F        10.8067149 B      6.24658372       1.73      0.0924 
     G         S         0.0000000 B       .                .         . 
     CAT       D         0.2553401 B      6.01082305       0.04      0.9664 
     CAT       HL      -10.6153846 B      6.12131570      -1.73      0.0917 
     CAT       SL        0.0000000 B       .                .         . 
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Dependent Variable: a0 
                                       Sum of 
 Source                     DF        Squares    Mean Square   F Value   Pr > F 
 Model                      10     0.18370643     0.01837064     13.06   <.0001 
 Error                      35     0.04921748     0.00140621 
 Corrected Total            45     0.23292391 
 
               R-Square     Coeff Var      Root MSE       a0 Mean 
               0.788697      9.591736      0.037500      0.390957 
 
 
 Source                     DF      Type I SS    Mean Square   F Value   Pr > F 
 
 NM                          1     0.08181404     0.08181404     58.18   <.0001 
 FAT                         1     0.00000524     0.00000524      0.00   0.9517 
 FAC                         4     0.06538600     0.01634650     11.62   <.0001 
 G                           2     0.03326786     0.01663393     11.83   0.0001 
 CAT                         2     0.00323329     0.00161664      1.15   0.3284 
 
 Source                     DF    Type III SS    Mean Square   F Value   Pr > F 
 NM                          1     0.13371211     0.13371211     95.09   <.0001 
 FAT                         1     0.00170326     0.00170326      1.21   0.2786 
 FAC                         4     0.03669293     0.00917323      6.52   0.0005 
 G                           2     0.03375455     0.01687727     12.00   0.0001 
 CAT                         2     0.00323329     0.00161664      1.15   0.3284 
 
                                            Standard 
     Parameter            Estimate             Error    t Value    Pr > |t| 
 
     Intercept        0.4258576858 B      0.03065382      13.89      <.0001 
     NM        19     0.1218888889 B      0.01249984       9.75      <.0001 
     NM        95     0.0000000000 B       .                .         . 
     FAT       Q      0.0125945486 B      0.01144374       1.10      0.2786 
     FAT       SS     0.0000000000 B       .                .         . 
     FAC       0      -.0102027257 B      0.04628240      -0.22      0.8268 
     FAC       10     -.0247427598 B      0.03285141      -0.75      0.4564 
     FAC       20     -.1036867783 B      0.03012912      -3.44      0.0015 
     FAC       40     -.0250000000 B      0.03749952      -0.67      0.5094 
     FAC       70     0.0000000000 B       .                .         . 
     G         C      0.0350857467 B      0.01407252       2.49      0.0175 
     G         F      -.0383737933 B      0.01500952      -2.56      0.0151 
     G         S      0.0000000000 B       .                .         . 
     CAT       D      0.0013450400 B      0.01444303       0.09      0.9263 
     CAT       HL     -.0184615385 B      0.01470852      -1.26      0.2177 
     CAT       SL     0.0000000000 B       .                .         . 
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Dependent Variable: a1 
                                       Sum of 
 Source                     DF        Squares    Mean Square   F Value   Pr > F 
 Model                      10     8607.52706      860.75271      3.68   0.0020 
 Error                      35     8190.65807      234.01880 
 Corrected Total            45    16798.18514 
 
               R-Square     Coeff Var      Root MSE       a1 Mean 
               0.512408      148.4835      15.29767      10.30261 
 
 Source                     DF      Type I SS    Mean Square   F Value   Pr > F 
 NM                          1     502.120305     502.120305      2.15   0.1519 
 FAT                         1      89.928204      89.928204      0.38   0.5393 
 FAC                         4    6613.319517    1653.329879      7.06   0.0003 
 G                           2     277.037890     138.518945      0.59   0.5587 
 CAT                         2    1125.121149     562.560575      2.40   0.1051 
 
 Source                     DF    Type III SS    Mean Square   F Value   Pr > F 
 NM                          1    1872.148669    1872.148669      8.00   0.0077 
 FAT                         1     762.941530     762.941530      3.26   0.0796 
 FAC                         4    6439.243412    1609.810853      6.88   0.0003 
 G                           2     256.809910     128.404955      0.55   0.5826 
 CAT                         2    1125.121149     562.560575      2.40   0.1051 
 
                                            Standard 
     Parameter            Estimate             Error    t Value    Pr > |t| 
 
     Intercept          4.51159162 B     12.50501603       0.36      0.7204 
     NM        19      14.42277778 B      5.09922437       2.83      0.0077 
     NM        95       0.00000000 B       .                .         . 
     FAT       Q        8.42922942 B      4.66839529       1.81      0.0796 
     FAT       SS       0.00000000 B       .                .         . 
     FAC       0       35.19911471 B     18.88059008       1.86      0.0707 
     FAC       10      34.95909114 B     13.40150964       2.61      0.0133 
     FAC       20      -5.08975317 B     12.29096943      -0.41      0.6813 
     FAC       40       0.09550000 B     15.29767310       0.01      0.9951 
     FAC       70       0.00000000 B       .                .         . 
     G         C        5.26036371 B      5.74078839       0.92      0.3658 
     G         F        5.37609852 B      6.12303136       0.88      0.3859 
     G         S        0.00000000 B       .                .         . 
     CAT       D       -8.64770633 B      5.89193385      -1.47      0.1511 
     CAT       HL     -12.89661538 B      6.00024105      -2.15      0.0386 
     CAT       SL       0.00000000 B       .                .         . 
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Dependent Variable: a2 
                                       Sum of 
 Source                     DF        Squares    Mean Square   F Value   Pr > F 
 Model                      10     1146101475      114610147      1.66   0.1293 
 Error                      35     2410886140       68882461 
 Corrected Total            45     3556987615 
 
               R-Square     Coeff Var      Root MSE       a2 Mean 
               0.322211     -213.9491      8299.546     -3879.214 
 
 Source                     DF      Type I SS    Mean Square   F Value   Pr > F 
 NM                          1    178681823.7    178681823.7      2.59   0.1163 
 FAT                         1      1010874.1      1010874.1      0.01   0.9043 
 FAC                         4    593562929.7    148390732.4      2.15   0.0947 
 G                           2    168857706.1     84428853.0      1.23   0.3058 
 CAT                         2    203988141.2    101994070.6      1.48   0.2414 
 
 Source                     DF    Type III SS    Mean Square   F Value   Pr > F 
 NM                          1    361459281.0    361459281.0      5.25   0.0281 
 FAT                         1     46934004.8     46934004.8      0.68   0.4147 
 FAC                         4    546655448.4    136663862.1      1.98   0.1185 
 G                           2    163048466.6     81524233.3      1.18   0.3182 
 CAT                         2    203988141.2    101994070.6      1.48   0.2414 
 
                                            Standard 
     Parameter            Estimate             Error    t Value    Pr > |t| 
 
     Intercept        -2317.087780 B      6784.42748      -0.34      0.7347 
     NM        19     -6337.360833 B      2766.51528      -2.29      0.0281 
     NM        95         0.000000 B          .             .         . 
     FAT       Q      -2090.672722 B      2532.77479      -0.83      0.4147 
     FAT       SS         0.000000 B          .             .         . 
     FAC       0      -8036.415361 B     10243.40904      -0.78      0.4380 
     FAC       10     -9023.348919 B      7270.80798      -1.24      0.2228 
     FAC       20      2972.442760 B      6668.29939       0.45      0.6585 
     FAC       40        -0.239000 B      8299.54584      -0.00      1.0000 
     FAC       70         0.000000 B          .             .         . 
     G         C      -4744.164890 B      3114.58717      -1.52      0.1367 
     G         F      -3007.486070 B      3321.96793      -0.91      0.3715 
     G         S          0.000000 B          .             .         . 
     CAT       D       3362.178141 B      3196.58910       1.05      0.3001 
     CAT       HL      5559.480462 B      3255.34971       1.71      0.0965 
     CAT       SL         0.000000 B          .             .         . 
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Dependent Variable: a3 
                                       Sum of 
 Source                     DF        Squares    Mean Square   F Value   Pr > F 
 Model                      10     1184734646      118473465      1.84   0.0899 
 Error                      35     2256603392       64474383 
 Corrected Total            45     3441338037 
 
               R-Square     Coeff Var      Root MSE       a3 Mean 
               0.344266      515.0254      8029.594      1559.068 
 
 Source                     DF      Type I SS    Mean Square   F Value   Pr > F 
 NM                          1     89387643.5     89387643.5      1.39   0.2470 
 FAT                         1    100292518.9    100292518.9      1.56   0.2206 
 FAC                         4    696871922.0    174217980.5      2.70   0.0462 
 G                           2     93118183.3     46559091.7      0.72   0.4928 
 CAT                         2    205064378.0    102532189.0      1.59   0.2182 
 
 Source                     DF    Type III SS    Mean Square   F Value   Pr > F 
 NM                          1       290111.0       290111.0      0.00   0.9469 
 FAT                         1     13445570.1     13445570.1      0.21   0.6507 
 FAC                         4    686969367.8    171742342.0      2.66   0.0486 
 G                           2     76016567.5     38008283.8      0.59   0.5600 
 CAT                         2    205064378.0    102532189.0      1.59   0.2182 
 
                                            Standard 
     Parameter            Estimate             Error    t Value    Pr > |t| 
 
     Intercept          5769.49245 B     6563.756674       0.88      0.3854 
     NM        19       -179.53983 B     2676.531392      -0.07      0.9469 
     NM        95          0.00000 B         .              .         . 
     FAT       Q       -1119.00456 B     2450.393558      -0.46      0.6507 
     FAT       SS          0.00000 B         .              .         . 
     FAC       0        6160.16722 B     9910.231131       0.62      0.5382 
     FAC       10      10120.43187 B     7034.317119       1.44      0.1591 
     FAC       20      -3676.16046 B     6451.405777      -0.57      0.5724 
     FAC       40          0.06500 B     8029.594175       0.00      1.0000 
     FAC       70          0.00000 B         .              .         . 
     G         C        3271.88037 B     3013.281870       1.09      0.2850 
     G         F        1624.72681 B     3213.917350       0.51      0.6164 
     G         S           0.00000 B         .              .         . 
     CAT       D       -5209.84567 B     3092.616600      -1.68      0.1010 
     CAT       HL      -4288.26315 B     3149.465953      -1.36      0.1820 
     CAT       SL          0.00000 B         .              .         . 
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Appendix G: Laboratory Noise Measurements 

This appendix contains information about the additional tests conducted in this study.  

Information summarized here describes the noise properties of selected specimens tested for 

frictional properties in the previous part of this report. 

 

G.1 Selection of the Specimens for Noise Tests in TPTA  

It is known that the texture of a pavement surface can have a significant impact on 

tire/pavement noise.  While not a major objective of Phase I or II of this study, the research did 

provide an opportunity for limited study of this relationship.  (Note that funding for this work 

came from an FHWA funded project on tire pavement noise.)   

It could be assumed that the aggregate type (within the typical range of aggregates 

specific gravities) would not significantly influence the tire/pavement noise generation and 

propagation mechanisms.  The macrotexture of the surface, however, will influence 

tire/pavement noise.  Essentially, in terms of texture, there were eight different mixture types that 

were tested for friction in the laboratory part of this study.  These are summarized in Table G 1 

and views of surface texture are shown in Figures B 1 through B 8, Appendix B.   

Ideally, all eight types should be tested for noise.  However, due to the resource 

limitations, only six were chosen.  (Six specimans can be mounted at one time in the 

Tire/Pavement Test Apparatus.)  The selected mixtures included PFC, SMA and four Superpave 

HMA mixtures.  As shown in Table G 1, the s-shaped mix (with NMAS=9.5 mm) and the coarse 

mix (with NMAS=19 mm) were dropped from the test matrix.  This selection was dictated by the 

fact that the macrotexture of the 95SS20S_D mix was within the range of two other mixes with 

9.5 mm NMAS (95SS20F_D and 95SS20C_D).  In case of mixtures with NMAS=19 mm, the 



 

 

229 

coarse mix (19SS20C_D) also had the highest Mean Profile Depth (MPD).  However, the coarse 

mix was already selected for testing (in the group of mixes with NMAS=9.5 mm) and the goal 

was to capture as many different mixtures as possible.   

It should also be noted that the same FAT (steel slag) and CAT (dolomite) aggregates 

were used in all four Superpave mixes tested for noise. 

 

Table G 1. Composition, texture and frictional properties of mixtures considered for noise testing 

in TPTA 

Mix Type Superpave PFC SMA 

Gradation Coarse Fine S-shaped Coarse Fine S-shaped PFC SMA 

NMAS, 

mm 
9.5 9.5 9.5 19 19 19 12.5 12.5 

Steel Slag 

Content, % 
20 20 20 20 20 20 80 90 

Label 
95SS 

20C_D 

95SS 

20F_D 

95SS 

20S_D 

19SS 

20C_D 

19SS 

20F_D 

19SS 

20S_D 
PFC SMA 

Binder 

Content, % 
5.7 5.7 7.0 4.5 4.2 5.4 5.7 5.7 

Gmm 2.65 2.66 2.58 2.69 2.69 2.65 3.15 3.19 

DF20
a
 0.57 0.56 0.53 0.54 0.48 0.52 0.66 0.60 

MPD
a
, mm 0.89 0.57 0.70 1.68 0.96 1.40 1.79 2.52 

Selected 

for Tests 

in TPTA? 

Yes Yes No No Yes Yes Yes Yes 

a
 Data from laboratory friction and texture measurements (results of this part of the study are 

discussed in Chapter Four); MPD and DF20 values presented here are averages from the whole 

slabs polishing process. 

 

Although by definition the NMAS of SMA and PFC mixes was 12.5 mm, and the 

conventional Superpave mixes had a NMAS of 9.5 mm, all the mixes had 100% passing the 12.5 

mm sieve size (refer to Figure 14). 
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G.2. Specimen Preparation 

As with the friction tests, the experimental design included collecting and processing a 

relatively large amount of material (as explained in section 3.3.1.1).  Six essentially similar 

mixes (as tested for friction) were also tested for noise properties.  The additional work to 

prepare mixtures for the laboratory noise tests included batching about 55 mix samples (four 

mixture types were prepared in the laboratory and two mixture types were collected during 

construction, as explained previously).   The amount of HMA placed in the mold for noise 

testing was about 130 to 160 kg (depending on the mixture’s Gmm).  The mix preparation process 

followed the steps explained in chapter 3.3.1.1. 

In general, the compaction procedure was similar to that presented previously for the 

rectangular slab preparation (refer to chapter 3.3.1.1).  However, due to the differences in sample 

size and shape, some changes were necessary.  At the time of specimen fabrication, mixes were 

reheated to the compaction temperature (refer to 3.3.1.1) and compacted into convex concrete 

molds (also called “concrete segments”).  The internal dimensions of these segments (which also 

were the asphalt layer dimensions) were: 406 mm wide x 1970 mm long x 76 mm deep (note that 

length is not a planar dimension, but the total length of the convex asphalt layer).  For detailed 

information regarding the mold dimensions, refer to Figure G 1. 
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Figure G 1. Concrete molds used in the study: (a) top and (b) side views 

 

In order to improve adhesion of the tested HMA to the concrete molds, the molds were 

“painted” with PG 64-22 binder 24 hours prior to compaction.  Due to the relatively large mass 

of the roller and concrete molds (in comparison to the amount of the compacted mixture), those 

two elements were heated to prevent the HMA from cooling rapidly during the compaction 

process (refer to Figure G 2 for details).  Molds were heated with eight heating lamps (0.5 kW 

each) for about seven hours prior to compaction.   

Note that the dark binder coating the internal part of the mold accelerated the 

heating process.  At the time of compaction, the concrete temperature was about 55°C.  The 

roller was heated as described for the friction sample preparation.  In addition to the roller, the 

hand tamper utilized in this part of the study was also heated. 

 

(a) 

(b) 
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Figure G 2. Heating process: (a) concrete mold and (b) compaction tools 

 

 

Due to the size of the compacted specimen, the rolling load was increased from 4.4 kN 

(the load applied during the friction specimen preparation) to 8.6 kN.  This load was achieved by 

placing an additional dead weight on the forks of the forklift used during the compaction process 

(the same roller was used during the preparation of specimens for both types of tests). 

 During trial compaction, inconsistencies in the amount of the applied load were 

recognized, as shown in  

Figure G 3.  Due to the convex shape of the sample, the load applied during compaction could 

not be constant; a different load was applied at the top of the mold compared to the areas close to 

the ends.  The downward force at all points was 8.6 kN while the total load depended on the 

roller speed, with the highest load differences in the areas close to the ends.  Two extreme cases 

include the roller in the “fixed” position (not rolling because the forklift uses brakes) and the 

roller free rolling down.  The loads normal to the surface of the specimen near the ends were 

about 9.9 kN and 7.4 kN for the “fixed” and free rolling cases, respectively.  The normal load is 

greater for the “fixed” case because the forklift braking action applies a horizontal load to the 

(b) 

(a) 
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specimen.  During the compaction the actual normal load was in the range between 7.4 kN and 

9.9 kN.   

In addition, static pressure from the mixture located in the center of the segment also 

influenced the load applied to the mixture located in the areas near both ends.  In order to prevent 

the concrete segment from unnecessary stresses, the concrete mold was supported in three places 

(in the middle and close to both ends), as shown in Figure G 4d.  

 

 

Figure G 3. Roller load distribution during the TPTA samples preparation: (a) roller in the 

“fixed” position and (b) free rolling down 

Note: figure not to scale. 

As with the friction slabs, the initial amount of mix to be compacted was calculated based 

on the mold volume and HMA bulk specific gravity (Gmb) corresponding to 7% air voids (or 

corresponding to Va=22% for the PFC mixture).  However, as opposed to the compaction of 

specimens for friction testing, somewhat less than the calculated amount of mix was placed into 

Note: 

F- load oriented parallel to the 

asphalt surface 

Six segments composed a circle; 

segment internal angle is 60° 

Fy = 8.6 kN 

F= Fy = 8.6 kN 

(b) 

F=Fy · sin 60°=7.4 kN 

(a) 

Fx = Fy / tan 60°=5.0 kN 

Fy = 8.6 kN 

F= Fy = 8.6 kN 

F=Fy / sin 60°=9.9 kN 

Fixed 

Free Rolling 
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the mold.  Two objectives had to be balanced during the TPTA specimen preparation: to achieve 

desired densification and to have a specific thickness of the asphalt layer (76 mm).  At the end of 

the compaction, the asphalt surface had to be even with the top surface of the concrete segment, 

which could not be reached with the entire amount of mix.  

Due to the forklift and mold dimensions, compaction was conducted from the middle of 

the segment to one side then the other.  (The forklift had to drive around the mold from one side 

to the other.)  During compaction the roller rolled from the center down.  Compaction was 

accomplished in one direction in two stages, as shown in Figure G 4.  Each of the stages included 

mixture pre-densification and compaction.  During the first stage, only the mixture in the middle 

part of the mold, from the center to about halfway down each side, was compacted.  During the 

second stage, mixture in the whole segment was compacted.  This two stage process was applied 

in order to prevent the mixture from sliding down from the higher to the lower elevation.  (The 

height difference was about 280 mm, as shown in Figure G 1.)   

At the beginning of the first stage (pre-densification of the mixture in the middle part), 

the mix was placed in the middle part of the mold only and then tamped with a spatula and a 

hand tamper (with a mass of about 10 kg) to prevent loss of material during initial compaction 

(refer to Figure G 4b).  A prism from the mixture was formed in such a way that mixture height 

in areas close to the walls was the lowest (and equal with the wall height).  Next (compaction of 

the mixture in the middle part), two flexible, thin metal sheets were positioned between the roller 

and compacted mixture (as shown in Figure G 4c).  These metal sheets were used to provide a 

larger contact area between the surface of the mixture and the roller, thus ensuring more uniform 

load distribution.  Using those sheets also reduced shoving of the mixture and heat loss.  (Note 

that the metal sheets were sprayed with an anti-adhesive agent prior to compaction, as shown in 
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Figure G 4a.)  Rolling was continued until a smooth surface was obtained (Figure G 4d).  Note 

that the metal sheet did not rest fully on the concrete mold.  Before each rolling, the metal sheets 

were raised and the extra mixture resting on the top of the walls was removed (refer Figure G 

4e). 

At the beginning of the second stage (pre-densification of the mixture in the mold), the 

mix was placed in the whole volume of the mold and then tamped with a spatula and a hand 

tamper to prevent loss of material during compaction (refer to Figure G 4f).  Again, a prism was 

formed with the mixture.  Next (compaction of the whole unit), thin metal sheets were positioned 

between the roller and compacted mixture and rolling was initiated.  Rolling continued until a 

smooth surface (with the height equal to the height of the walls of the concrete mold) was 

obtained and no further densification was observed (see Figure G 4g).  Note that the metal sheet 

is rested fully on the concrete mold.   
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Figure G 4. . Stages of the TPTA segments compaction process: (a) spraying thin metal sheet 

with an anti-adhesive agent, (b) first stage: pre-densification, (c) specimen before the first stage 

of compaction, (d) first stage: compaction, (e) removing mixture covering top of the walls, (f) 

second stage: pre-densification and (g) second stage: compaction 

The typical rolling process took about 25 minutes and the mix temperature was 

monitored during the entire process.  This process was developed through trial and error and was 

(f) (e) 

(d) 

(b) 

(a) (c) 

(g) 
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found to yield an acceptable (smooth) surface profile.  Although compaction of the convex 

sample could not fully simulate field operations, it is believed that the procedure utilized here 

simulated field compaction to a great extent.  It should be noted that due to the heating procedure 

utilized in this study, only one sample was prepared per day. 

Views of the surface texture of the specimens compacted into the concrete molds are 

shown in Appendix B, in Figures B 12 through B 17.  

 

G.3. Equipment and Testing 

None of the currently existing laboratory methods can fully simulate tire/pavement noise.  

However, it appears that the Tire/Pavement Testing Apparatus (TPTA) allows investigation of 

the noise generation phenomenon.  It should be noted, however, that the noise propagation 

phenomenon cannot be studied using this device.   

The TPTA device used in this study is unique equipment, which is not covered by any 

standards.  This device is located in an anechoic chamber at the Herrick Laboratories (Purdue 

Mechanical Engineering Department) and was fabricated in 2001 by the Institute for Safe, Quiet 

and Durable Highways (SQDH).   

The TPTA device (shown in Figure G 5) consists of a fixed drum and a rotating circular 

plate positioned above the drum.  Six curved pavement segments are mounted around the drum.  

The pavement diameter is about 4.1 meters, and the length of each pavement specimen is 

approximately 1/6 of the apparatus circumference.  Two arms are attached to the rotating plate.  

A testing wheel is attached to the end of one arm (optionally, wheels could be attached to both 

arms).  During testing, the rotating plate rotates the arms, which causes the wheel (or wheels) to 

roll along the outside of the specimens.  The center of the wheel travels with a maximum speed 
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of about 48 km/h (30 mph) resulting in about 65 arm rotations per minute (rpm).  In other words, 

the test tire passes over each section of the specimen about once per second.  Speed is limited to 

this value, which is lower than typical highway speed, due to various technical limitations 

(mainly due to the presence of the large centrifugal forces created at that speed by the rotating 

arm).   

Prior to testing, the wheel assembly is loaded with a force of about 2.67 kN (total force 

between the tire and pavement), measured when the tire is positioned in the middle of the 

specimen; this load is approximately equal to the weight of one wheel of a typical passenger car.  

It should be noted that a current project is focused on developing an empirical model to 

predict tire/pavement noise at speeds higher than 48 km/h (to predict the value of laboratory 

measured tire/pavement noise at typical highways speeds).  In order to develop this model, a 

series of tests performed at different speeds is being conducted both in the field and in the lab.  In 

the lab, tests are run at 48 km/h (30 mph), at 32 km/h (20 mph) and at 16 km/h (10 mph).  

Development of the field noise/speed relationship will be utilized to extrapolate the laboratory 

developed speed/noise curve to higher speeds.  
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Figure G 5. Tire/Pavement Testing Apparatus (TPTA) 

During standard tests, concrete segments with a compacted HMA were positioned 

vertically in the TPTA device, as shown in Figure G 6.  The P225/60R16 97S Radial Standard 

Reference Test Tire (RSRTT) covered by ASTM F 2493 (2006) was used to roll along the 

specimen; this tire should not be confused with the Radial Standard Reference Test Tire covered 

by the ASTM E 1136 (2003) specification.  Before the measurements, the tire was conditioned 

by rolling about the specimens for four hours at a speed of 48 km/h.  Note that the tire 

conditioning procedure was conducted on other specimens, not tested in this research. 

The wheel and specimens were positioned in such a way that the center of the tire rolls 

along the center of the specimen (refer to Figure G 6).  Air pressure in the tire was maintained at 

a level of 240 Pa.  Directly before measurements, the tire was warmed-up by running at a speed 

of 48 km/h along the specimens for 15 minutes.   

2.67 kN 

2050 mm 
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It should be noted that data were collected from only one specimen at a time during 

single operation.  (The wheel load was adjusted separately for each specimen.)  Moreover, data 

were collected only from the middle part of the specimen (called the “testing zone”), not the total 

length.  Noise information was not collected from areas before the tire reached the testing zone 

(called the “approaching zone”) and after the tire leaves the testing zone (called the “exiting 

zone”).  Those two areas consist of the concrete wall and HMA mixture.  The length of the 

testing zone was about 106 cm and this zone was identified in the following way: magnetic 

triggers were mounted on the drum and on the rotating arm; once the arm and drum were 

positioned in such a way that the magnetic triggers were close together, the data acquisition 

system was initiated and started to collect sound data.  Those data were then collected 

continuously for the next 0.08 seconds.  Collecting data for this period of time at the speed of 48 

km/h resulted in the length of the testing zone equal to about 106 cm.  The middle of the testing 

zone was in the middle of the specimen.  For tests conducted at lower speeds, the time of data 

collection was extended to preserve collecting data from the same location during all 

measurements. 

During operation, data from 100 passes of the tire were collected and averaged.  It should 

be noted that typically results stabilized after about 25 passes. 
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Figure G 6. TPTA during the operation: (a) general view and (b) transition zone between the 

specimens 

The Close Proximity Sound Intensity (CPI) method was utilized to measure the 

tire/pavement noise in the laboratory.  This near-field method is commonly used during field 

(highway) noise measurements.  It should be noted that using this set-up (and using near-field 

methods in general) the pavement noise propagation phenomenon cannot be deeply investigated.   

The measurement procedure followed the draft AASHTO specification [AASHTO OBSI 

draft (2007)], and the equipment set-up is shown in Figure G 7.  The applied procedure is called 

the On-Board Sound Intensity Method (OBSI) (called also as a CPI method) and includes 

collecting the sound intensity data from two pairs of intensity probes.  Phase-matched 

microphone pairs, mounted near the test tire, were positioned close to the leading and trailing 

edges of the contact patch.  The center of the probes was located 76 mm from the pavement and 
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102 mm above the edge of the tire.  In addition, probes were positioned 105 mm from the center 

of the hub.  The separation between centers of two microphones (for each pair) was 17 mm.  

Prior to measurement, each of the microphones was calibrated following the 

manufacturer’s recommendations (Brüel & Kjær). 

The data acquisition system collected information in the following way [Dare et al. 

2007]:  

For each measurement, A-weighted, narrow-band intensity spectra were collected 

and averaged over 100 passes of the test tire over the pavement sample with a 

sampling rate of 12,800 Hz. The narrow-band intensity data resolution was 12.5 

Hz over the frequency range from 12.5 to 5,000 Hz. The intensities from the 

leading and trailing probes were averaged at each frequency. One-third octave 

band intensity spectra from 630 to 4,000 Hz were calculated by summing the 

narrow-band intensity in each one-third octave band. Overall intensity levels were 

calculated by adding all of the narrow-band intensities from 500 to 5,000 Hz. 

 

 

 

 

 

Figure G 7. Microphones set-up: (a) side and (b) oblique view (protective windscreens removed 

for the picture) 

(a) (b) 
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The specimens were positioned in the TPTA about one to two weeks after sample 

preparation (each sample was prepared on a different day).  Tests were conducted five times, on 

separate days on potentially different surface condition (SCD) as described below.  Each time all 

six segments were investigated.  During the first day of testing (referred to later as surface 

condition 1 (SCD_1), the specimens’ surfaces were in the condition as at the end of the 

compaction process (specimens were not exposed to tire action, except short trial tests and tire 

warming-up, or about one hour of TPTA operation).  On the second day of testing (referred to 

later as SCD_2) specimens were tested again.  At this time, the specimen surface was not 

exposed to extensive tire action, however, at the time of testing the tire had already rolled along 

the surface for about two to three hours.  During SCD_1 and SCD_2 testing (first and second 

day), noise data were collected at speed of 48 km/h. 

Before the third day of tests (SCD_3), specimens were exposed to a longer period of tire 

action, which potentially could wear off some asphalt coating the aggregate particles in the 

tire/pavement contact area; during this operation the tire rolled along the surface for about five 

hours (resulting in about 20,000 wheels passes).  During the third day of testing, noise data were 

collected at three different speeds: at 16, 32 and 48 km/h. 

Non-standard tests conducted on the fourth and fifth day included using two other tires, 

in addition to the previously used P225/60R16 97S Radial Standard Reference Test Tire.  The 

two tires which were employed were a  Uniroyal  Tiger  Paw  (P205/70R15  95S  M+S)  and  a  

Goodyear Aquatred (P205/70R15 95T M+S) (refer to Figure G 8).  The  Uniroyal  Tiger  Paw  

tire is later referred to as a UTP tire and the Goodyear Aquatred is referred to as the GA tire.  

Due to differences in the tire dimensions, the centers of those two non-standard tires were 

positioned about 2.5 cm above the center of the previously used RSRTT tire.  All other set-up 
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remained unchanged, and the tires were conditioned before testing in the same way as the tire 

used in the standard tests.  Using those two tires, tests at three different speeds (at 16, 32 and at 

48 km/h) were conducted. 

The standard test procedure included air temperature measurement, microphone 

calibration, tire pressure control and adjustment, wheel load adjustment, tire warming-up, 

positioning of the magnetic triggers, acceleration of the machine to the testing speed and 

conducting the measurement.  After this operation, the machine was stopped and the magnetic 

triggers were relocated to the next specimen.  Again, the wheel load was adjusted, the machine 

was accelerated to the testing speed and measurements were conducted.  This procedure was 

applied to all six specimens. 

It should be noted that all laboratory tests were conducted at a temperature of 20±3°C. 

 

Figure G 8. Tires used during the noise tests in TPTA: non standard (a) Uniroyal Tiger Paw 

(UTP) and (c) Goodyear Aquatred (GA) and (b) standard Radial Standard Reference Test Tire 

(RSRTT) 
Note the directional tred pattern (with water expulsion channels) for GA tire. 

 

 

(a) (c) (b) 
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Macrotexture has a great impact on tire/pavement noise.  The macrotexture of all six 

segments was measured using the CTM device.  Although this device is designed to operate on a 

flat surface, it was recognized that this test method could be adopted to testing a convex 

specimen also.  During the standard test, the CTM scans texture on a circular path with a 284 

mm diameter.  The radius of the convex specimen used in this study was 2050 mm, thus for a 

284 mm chord of the TPTA specimen (284 mm is also diameter of the circle covered by the 

CTM device during measurement), the difference in TPTA elevations (in this 284 mm TPTA 

chord) is about 4.9 mm.  Note, that following ASTM E 1845 (2005), the MPD is “the average of 

all of the mean segment depths of all of the segments of the profile,” as discussed in Chapter 

Two.  Thus, analyzing each of the measured segment separately, relative differences in 

elevations are less significant in MPD determination and it was possible to determine the MPD 

value for each of the TPTA specimens.  This macrotexture was determined after all noise tests 

were conducted. 

 

G.4. Sample Volumetric Properties 

As discussed previously, the desirable air void content of the specimens is 7% (and 22% 

for PFC).  However, due to the compaction technique adopted in this project, this target could 

not be reached without crushing aggregates.  Loss of heat likely played a role.  Although it was 

not verified in this study, it is expected that the air void content would not be uniform either.  

Partially due to the boundary effect, lower densification is expected in areas close to the concrete 

segment walls.  It also should be noted that based on the visual examination no rutting caused by 

the wheel action was observed. 
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For the purposes of this study, the most important area in which to determine the air 

content is in the testing zone.  Once the tests in the TPTA were completed, three 152 mm 

diameter cores were extracted from each segment.  As shown in Figure G 9, one core was drilled 

from the middle of the testing zone (referred to as the “middle” core, C_M) while the other two 

were extracted from two opposite corners of the testing zone (referred to as left and right cores, 

C_L and C_R, respectively).  Due to difficulties associated with drilling on the non-horizontal 

surface, these two cores were not located exactly at the ends of the testing zone, but instead were 

52 mm closer to the arc center. 

 
Figure G 9. Location of the cores extracted from the specimens 

Note: 1) distances measured on the curved surface and 2) since presented lines are drawn in a plane, there are 

schematics only (however, line should be drawn on the arc). 

Again, a relatively large core diameter (152 mm) was selected to allow specimens for 

water permeability tests; however, this testing was not deemed to be necessary and was not 

conducted.  Specific gravity tests were conducted following ASTM D 6752 (2004) using the 

CoreLok apparatus.  Based on this Gmb and on the previously determined Gmm, the air void 

content was calculated for each specimen.   

As with the lab friction slabs, the air content was higher than expected and had the 

following average distribution: 17.1% for SMA, 26.4% for PFC, 14.0% for 95SS20F_D, 16.3% 
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for 19SS20F_D, 20.9% for 95SS20C_D and 23.4% for 19SS20S_D.  The expected air contents 

for the same mixtures were about 8 to 10% for all mixtures but PFC, for which about 22% voids 

was expected.  Differences in the air content values between the  three core locations in the same 

segment were less than about 1%.     

The visual examination of the extracted cores revealed random orientation of particles in 

the cores from both types of specimens. 

 

G.5. Results and Discussion  

During the laboratory noise measurements conducted using the Tire/Pavement Testing 

Apparatus (TPTA), the influence of mixture composition on the tire/pavement noise was 

investigated.  Series of tests were conducted under various conditions (tire type, speed and 

surface condition) which could potentially influence the noise generated.  Tests were conducted 

with three different tires: Radial Standard Reference Test Tire (RSRTT), Uniroyal Tiger Paw 

(UTP) tire and Goodyear Aquatread (GA) tire.  Three different speeds were utilized: 16, 32 and 

48 km/h.  In addition, for one tire type (RSRTT) running at one speed (48 km/h) tests were 

conducted at different surface conditions (SCD): as constructed (SCD_1), limited exposure to 

tire action (SCD_2) and after prolonged exposure to tire action, simulating the wear processes 

taking place during the first few months of the pavement use (SCD_3).  

A general comparison of the sound intensity levels (SIL) for tests conducted with the 

three different tires at a speed of 48 km/h is shown in Figure G 10.  As expected, the UTP tire 

was significantly quieter (SIL was between 82 and 91 dB(A), depending on the specimen) than 

the RSRTT and GA tires (84 to 92.5 dB(A)).  Moreover, in most cases the GA was louder than 

the RSRTT.  The RSRTT is wider than other two tires, thus it was expected that a higher noise 

level would be generated with this tire.  However, the GA tire has a different tread pattern 
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(directional tread pattern) than the RSRTT and UTP; typically tires with such a tread pattern are 

considered to be louder.  
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Figure G 10. General comparison of sound intensity levels (SIL) at test speed of 48 km/h 

The general loudness of the pavement specimens (as measured by the generated noise 

level) was the same for all the tires tested.  It was observed that the coarse graded mixture with 

9.5 mm NMAS (95SS20C_D) was the quietest and PFC was the loudest.  The fine-graded 9.5 

mm NMAS (95SS20F_D) was louder by about 2 dB(A) than 95SS20C_D and it was second 

quietest surface.  The SMA surface was the second loudest specimen and mixes with 19 mm 

NMAS were located in the middle of the range. 

The quietest to loudest order of samples, as presented in Figure G 10, corresponds well 

with general trends reported in the literature.  However, the PFC mixture, which was reported to 

be the quietest was actually found to be the loudest in the TPTA.  In order to investigate this 

phenomenon, limited texture measurements were conducted and MPD values were calculated for 

each specimen.  These values were as follows: 2.53 mm for PFC, 1.97 mm for SMA, 1.77 mm 

for 19SS20S_D, 0.98 mm for 95SS20C_D, 0.88 mm for 19SS20F_D and 0.44 for 95SS20F_D.  
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The high noise level generated on the PFC surface could be potentially related to the high MPD 

values (although PFC has typically higher MPDs than conventional mixtures, they are generally 

not as high as observed here).  Due to limitations in the available test equipment, texture wave 

analysis was not conducted.  It is likely that additional information about texture wave length and 

amplitude (not available here) would help to explain the unexpected high noise level generated 

by the PFC specimen.  The observed SIL could not be simply explained by the air content in the 

specimens: the quietest surface (95SS20C_D) has 20.9% air but second quietest (95SS20F_D) 

has the lowest amount of air voids of 14.0%.  In addition, the PFC segment with the highest air 

voids content of 26.4% was actually the loudest.  

As can be further observed in Figure G 10, the noise levels for the SCD_1 and 

SCD_2 measurements (new and slightly exposed to the tire action, respectively) were similar.  

However, the noise for SCD_3 was, in most cases, slightly higher.  This is, again, expected 

behavior as the longer exposure to tire wear should result in an increase in the noise level.  This 

phenomenon is most likely related to changes in the surface microtexture caused by the binder 

wearing from the aggregate surfaces (from those parts of aggregates which are in contact with 

the rolling tire). 

It should be noted that the asphalt specimens tested in this study were significantly 

quieter than the concrete specimens tested in another study, using the same set-up as for tests 

with asphalt specimens.  The concrete specimens had various surfaces: smooth-finished, ground 

and grooved using different blade pattern configurations.  As shown in Figure G 11, SIL for 

these concrete segments was between 89.2 and 92.5 dB(A) when testing with the UTP tire and 

between 90.4 and 93.9 dB(A) when testing with the GA tire [Dare et al. 2007]. 
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Figure G 11. Sound intensity levels of concrete specimens with various surfaces tested in TPTA 

[after Dare et al. 2007] 

Note: at the time of tests, the RSRTT was approved as a standard tire so only UTP and GA tires were used. 

For tests on the asphalt segments, the noise frequency spectra were also determined, as 

represented by the 1/3
rd

 octave band plots shown in Figure G 12.  A frequency spectrum plot 

shows how much sound energy was presented at a given frequency band.  It could be observed 

that at low frequencies (500 Hz, 630 Hz and 800 Hz), the PFC surface is the loudest.  However, 

at higher frequencies (1250 Hz and higher), the PFC is quietest or in the middle range of SIL of 

other specimens.   Note that the peak of human hearing sensitivity is in the frequency range of 1 

kHz and 4 kHz.  In this frequency range, the SIL of the PFC specimen dropped down.  The SIL 

of the quietest surface (95SS20C_D) is continuously within the low range of all frequencies.  It 

could also be observed that the peak noise level was reached at frequencies of about 1250 Hz for 

all specimens but the PFC.  The PFC peak was located at 630 Hz.  At frequencies above 1.6 kHz, 

the SIL of all specimens continued to decrease.  The complete frequency spectra plots obtained 

of different tire/speed combinations are shown in Appendix G in Figures G 15 to 24. 
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Figure G 12. 1/3 Octave frequency spectra for RSRTT SCD_3, test speed 48 km/h 

 

Results of noise tests conducted at three different speeds are shown in Figure G 13.  Due 

to equipment limitations, during this study, the noise tests were conducted with the maximum 

speed of 48 km/h, which is about half of typical highway speed.  Since it would be beneficial to 

be able to predict the noise level at higher speeds based on the laboratory observations conducted 

at lower speeds, an attempt was made to develop a simple model for this purpose.  This was 

accomplished by fitting (separately for each specimen) a trend line to the result of noise tests 

conducted at 16, 32 and 48 km/h.  Using this process, logarithmic models have been developed 

for individual specimens, each approximating the actual data with a high (R
2
>0.98) degree of 

accuracy.  Using this model, the noise prediction at speeds up to 97 km/h (or 60 mph) has been 

accomplished by extrapolating data acquired at lower speeds.  It should be noticed, however, that 

this approach provides only a rough approximation of the noise level at higher speeds, and the 

accuracy of prediction was not verified by any of the field tests. 

The relationships of the sound intensity level and speed for tests with UTP and GA tires 

are shown in Figures G 25 to 26.  Extrapolation of the sound intensity at higher speeds is also 
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shown in those two figures.  Generally, the overall prediction of the noise looks consistent, i.e., 

none of the extrapolation curves cross. 

However, it is possible that for the PFC specimen, as the speed increased, the SIL peak 

would move to lower frequencies (an indication of this could be observed in Figure G 12 and 

Figures G 15 to 24.  Generally, lower frequencies are less annoying to humans.  Moreover, it is 

possible that the proposed extrapolation may not correctly predict the SIL for PFC at 97 km/h.  If 

this was the case, the actual A-weighted (filtered) noise level would be lower, making the PFC 

less annoying with respect to noise. 
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Figure G 13. Sound intensity level vs. speed relationship and SIL extrapolated to 97 km/h for 

tests with RSRTT SCD_3 

The overall predicted sound intensity level at 97 km/h is presented in Figure G 14 for all 

three types of tires.  It can be observed that, similarly to trends shown in Figure G 10, the GA is 

louder than the RSRTT, and the RSRTT is louder than the UTP.  In addition, the order (from the 

loudest to the quietest) remains similar to the order presented in Figure G 10.  
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Figure G 14. General comparison of predicted sound intensity levels at test speed of 97 km/h 

 

G.6. Summary  

Laboratory noise tests were only partially successful, most likely due to difficulties with 

the compaction of the PFC mixture in the convex mold.  However, except for the PFC mixture, 

laboratory tire/pavement noise measurements suggested that results obtained from the TPTA 

machine can potentially be used to predict the influence of the mixture composition on the 

tire/pavement noise without the need of building field test sections.  In the tests performed, 

mixtures with 19 mm NMAS produced higher noise levels than mixtures with 9.5 mm NMAS.  It 

also was observed that mixtures with the “s-shaped” gradation were louder than the “coarse” or 

“fine” graded mixtures. 
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G.7. Additional Test Results  

Plots of 1/3 octave frequency spectra are presented in Appendix G (Figures G 15 to G 24) 

for tests with RSRTT conducted at 48 km/h (SCD_1 and SCD_2), for same tire but for tests 

conducted at 16 and 32 km/h (SCD_3) and for the UTP and GA tires at 16, 32 and 48 km/h 

(SCD_3). 

In addition, the relationships between sound intensity level and speed for tests 

with UTP and GA tires are shown (refer to Figures G 25 and G 26).  For those two tires, the 

predicted SIL at speed of 97 km/h is also presented, separately for each specimen.   
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Figure G 15. 1/3 Octave frequency spectra for RSRTT SCD_1, test speed 48 km/h 
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Figure G 16. 1/3 Octave frequency spectra for RSRTT SCD_2, test speed 48 km/h 
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Figure G 17. 1/3 Octave frequency spectra for RSRTT SCD_3, test speed 16 km/h 
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Figure G 18. 1/3 Octave frequency spectra for RSRTT SCD_3, test speed 32 km/h 
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Figure G 19. 1/3 Octave frequency spectra for UTP tire, test speed 16 km/h, SCD_3 
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Figure G 20. 1/3 Octave frequency spectra for UTP tire, test speed 32 km/h, SCD_3 
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Figure G 21. 1/3 Octave frequency spectra for UTP tire, test speed 48 km/h, SCD_3 
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Figure G 22. 1/3 Octave frequency spectra for GA tire, test speed 16 km/h, SCD_3 
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Figure G 23. 1/3 Octave frequency spectra for GA tire, test speed 32 km/h, SCD_3 

 

 

 



 

 

259 

55

60

65

70

75

80

85

90

95

500 1000 1500 2000 2500 3000 3500 4000
Frequency, Hz

S
IL

, 
d
B

(A
)

19SS20S_D 19SS20F_D
95SS20F_D 95SS20C_D
PFC SMA

 
Figure G 24. 1/3 Octave frequency spectra for GA tire, test speed 48 km/h, SCD_3 
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Figure G 25. Sound intensity level vs. speed relationship and SIL extrapolated to 97 km/h for 

tests with UTP tire, SCD_3 
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Figure G 26. Sound intensity level vs. speed relationship and SIL extrapolated to 97 km/h for 

tests with GA tire, SCD_3 
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Appendix H: Summary of the Field CTM/DFT Measurements 

This appendix contains a summary of the field CTM/DFT tests data.  Data are presented in Table 

H 1 in the following order: section label (and time of test, for PFC, SMA and DGA sections 

only), age (number of years section is in service), approximate number of vehicle axles passed 

section at the time of test (# axle, 10^6), test repetition (R), mean profile depth (MPD) value (for 

the left, center and right path), dynamic friction (DF20) value (for the left, center and right path) 

and calibrated wet friction (F60) value (for the left, center and right path). 
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Table H 1. Summary of the field CTM/DFT measurements 

Section/Test Age, # R MPD, mm DF20 F60 

Label Years Axles  L C R L C R L C R 

PFC_8_05 2 22.3 1 1.45 1.52 1.47 0.68 0.66 0.64 0.46 0.45 0.44 

PFC_8_05 2 22.3 2 1.62 1.56 1.45 0.68 0.64 0.60 0.47 0.44 0.41 

PFC_8_05 2 22.3 3 1.51 1.35 1.62 0.71 0.65 0.60 0.48 0.44 0.42 

PFC_11_05 2.3 25.7 1 1.21 1.34 1.36 0.63 0.59 0.56 0.41 0.40 0.39 

PFC_11_05 2.3 25.7 2 1.44 1.31 1.46 0.57 0.63 0.60 0.40 0.42 0.41 

PFC_11_05 2.3 25.7 3 1.43 1.23 1.47 0.58 0.63 0.63 0.40 0.42 0.43 

PFC_10_06 3.2 36.0 1 1.28 1.54 1.31 0.58 0.51 0.49 0.39 0.37 0.35 

PFC_10_06 3.2 36.0 2 1.36 1.49 1.69 0.51 0.53 0.52 0.36 0.38 0.38 

PFC_10_06 3.2 36.0 3 1.24 1.17 1.34 0.53 0.55 0.51 0.37 0.37 0.36 

PFC_4_07 2.7 42.1 1 1.24 1.42 1.58 0.66 0.68 0.59 0.43 0.46 0.41 

PFC_4_07 2.7 42.1 2 1.53 1.47 1.50 0.67 0.63 0.60 0.46 0.43 0.41 

PFC_4_07 2.7 42.1 3 1.66 1.34 1.40 0.64 0.73 0.61 0.45 0.48 0.42 

PFC_8_07 3 45.5 1 1.81 1.51 1.51 0.59 0.67 0.67 0.42 0.46 0.45 

PFC_8_07 3 45.5 2 1.22 1.41 1.46 0.62 0.66 0.58 0.41 0.45 0.40 

PFC_8_07 3 45.5 3 1.25 1.39 1.36 0.62 0.61 0.58 0.41 0.42 0.39 

PFC_10_07 3.1 47.8 1 1.24 1.45 1.55 0.53 0.57 0.52 0.36 0.40 0.37 

PFC_10_07 3.1 47.8 2 1.27 1.31 1.51 0.60 0.59 0.55 0.40 0.40 0.39 

PFC_10_07 3.1 47.8 3 1.23 1.33 1.45 0.54 0.61 0.50 0.37 0.41 0.36 
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Section/Test Age, # R MPD, mm DF20 F60 

Label Years Axles  L C R L C R L C R 

SMA_8_05 2 22.3 1 1.17 1.17 1.14 0.77 0.75 0.68 0.49 0.47 0.43 

SMA_8_05 2 22.3 2 1.14 1.24 1.21 0.77 0.76 0.69 0.48 0.49 0.44 

SMA_8_05 2 22.3 3 1.03 1.28 0.92 0.77 0.79 0.67 0.47 0.50 0.41 

SMA_11_05 2.3 25.7 1 1.14 0.91 0.97 0.67 0.78 0.69 0.43 0.45 0.42 

SMA_11_05 2.3 25.7 2 1.12 1.12 1.14 0.71 0.69 0.80 0.45 0.44 0.50 

SMA_11_05 2.3 25.7 3 1.12 1.48 1.09 0.72 0.78 0.71 0.45 0.52 0.44 

SMA_10_06 3.2 36.0 1 0.97 1.04 1.00 0.52 0.72 0.61 0.34 0.44 0.38 

SMA_10_06 3.2 36.0 2 0.91 1.15 1.17 0.63 0.68 0.59 0.39 0.44 0.39 

SMA_10_06 3.2 36.0 3 1.04 1.16 1.10 0.62 0.65 0.71 0.39 0.42 0.45 

SMA_4_07 2.7 42.1 1 1.14 1.16 1.14 0.78 0.87 0.77 0.48 0.54 0.48 

SMA_4_07 2.7 42.1 2 1.03 1.16 1.04 0.76 0.79 0.82 0.46 0.49 0.50 

SMA_4_07 2.7 42.1 3 1.10 1.16 1.03 0.75 0.84 0.74 0.46 0.52 0.45 

SMA_8_07 3 45.5 1 0.80 1.28 1.03 0.74 0.78 0.69 0.42 0.50 0.43 

SMA_8_07 3 45.5 2 0.98 1.17 1.13 0.70 0.78 0.74 0.43 0.49 0.46 

SMA_8_07 3 45.5 3 0.88 1.17 1.06 0.69 0.82 0.67 0.41 0.51 0.42 

SMA_10_07 3.1 47.8 1 1.00 1.20 1.16 0.68 0.78 0.65 0.42 0.49 0.42 

SMA_10_07 3.1 47.8 2 0.96 1.12 1.30 0.64 0.79 0.67 0.39 0.49 0.44 

SMA_10_07 3.1 47.8 3 0.83 1.07 1.22 0.67 0.79 0.66 0.39 0.48 0.43 
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Section/Test Age, # R MPD, mm DF20 F60 

Label Years Axles  L C R L C R L C R 

DGA_5_06 1.8 15.8 1 0.47 0.40 0.44 0.39 0.43 0.42 0.22 0.22 0.23 

DGA_5_06 1.8 15.8 2 0.56 0.48 0.47 0.42 0.45 0.39 0.25 0.24 0.22 

DGA_5_06 1.8 15.8 3 0.49 0.48 0.45 0.42 0.47 0.40 0.23 0.25 0.22 

DGA_11_06 3.3 18.5 1 0.48 0.44 0.63 0.38 0.37 0.39 0.22 0.21 0.24 

DGA_11_06 3.3 18.5 2 0.52 0.59 0.49 0.40 0.38 0.38 0.23 0.24 0.22 

DGA_11_06 3.3 18.5 3 0.68 0.60 0.50 0.44 0.40 0.35 0.27 0.24 0.21 

DGA_4_07 2.8 20.8 1 0.62 0.59 0.56 0.48 0.58 0.43 0.28 0.31 0.25 

DGA_4_07 2.8 20.8 2 0.62 0.55 0.52 0.46 0.55 0.44 0.27 0.30 0.25 

DGA_4_07 2.8 20.8 3 0.58 0.47 0.57 0.42 0.57 0.45 0.25 0.29 0.26 

DGA_7_07 3 22.2 1 0.53 0.53 0.55 0.48 0.54 0.49 0.26 0.29 0.27 

DGA_7_07 3 22.2 2 0.59 0.45 0.54 0.48 0.55 0.47 0.27 0.27 0.26 

DGA_7_07 3 22.2 3 0.58 0.52 0.45 0.46 0.53 0.47 0.27 0.28 0.25 

DGA_10_07 3.2 23.4 1 0.68 0.44 0.54 0.45 0.46 0.44 0.27 0.24 0.25 

DGA_10_07 3.2 23.4 2 0.65 0.48 0.52 0.46 0.50 0.44 0.27 0.26 0.25 

DGA_10_07 3.2 23.4 3 0.59 0.50 0.58 0.43 0.56 0.43 0.25 0.29 0.25 
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Section/Test Age, # R MPD, mm DF20 F60 

Label Years Axles  L C R L C R L C R 

HM-IN-1 2 6.4 1 0.33 0.33 0.40 0.46 0.67 0.53 0.22 0.28 0.26 

HM-IN-1 2 6.4 2 0.44 0.38 0.45 0.50 0.69 0.57 0.26 0.30 0.28 

HM-IN-1 2 6.4 3 0.38 0.29 0.38 0.46 0.66 0.55 0.23 0.26 0.26 

HM-IN-1 2 6.4 4 0.40 0.33 0.37 0.47 0.68 0.55 0.24 0.28 0.25 

HM-IN-1 2 6.4 5 0.42 0.29 0.47 0.49 0.71 0.60 0.25 0.27 0.30 

HM-IN-2 1 1.1 1 0.28 0.25 0.30 0.43 0.56 0.49 0.19 0.22 0.22 

HM-IN-2 1 1.1 2 0.33 0.27 0.25 0.47 0.59 0.52 0.22 0.23 0.21 

HM-IN-2 1 1.1 3 0.33 0.27 0.30 0.50 0.61 0.49 0.23 0.24 0.22 

HM-IN-2 1 1.1 4 0.34 0.32 0.30 0.58 0.62 0.55 0.26 0.26 0.23 

HM-IN-2 1 1.1 5 0.29 0.27 0.31 0.51 0.73 0.52 0.22 0.27 0.23 

HM-IN-3 1 1.3 1 0.35 0.28 0.29 0.54 0.58 0.54 0.25 0.23 0.23 

HM-IN-3 1 1.3 2 0.35 0.29 0.32 0.54 0.61 0.57 0.24 0.25 0.24 

HM-IN-3 1 1.3 3 0.34 0.27 0.31 0.53 0.66 0.52 0.24 0.25 0.23 

HM-IN-3 1 1.3 4 0.33 0.33 0.30 0.58 0.57 0.61 0.25 0.25 0.25 

HM-IN-3 1 1.3 5 0.35 0.29 0.34 0.52 0.63 0.55 0.24 0.25 0.25 

HM-IN-6 1 1.0 1 0.31 0.36 0.45 0.54 0.70 0.63 0.23 0.30 0.30 

HM-IN-6 1 1.0 2 0.33 0.39 0.41 0.54 0.73 0.63 0.24 0.32 0.29 

HM-IN-6 1 1.0 3 0.36 0.34 0.35 0.58 0.70 0.66 0.26 0.29 0.28 

HM-IN-6 1 1.0 4 0.38 0.41 0.36 0.57 0.76 0.68 0.26 0.33 0.29 

HM-IN-6 1 1.0 5 0.34 0.37 0.37 0.63 0.82 0.63 0.27 0.34 0.28 

HM-IN-7 1 0.7 1 0.37 0.33 0.35 0.74 0.80 0.74 0.31 0.32 0.31 

HM-IN-7 1 0.7 2 0.36 0.30 0.34 0.72 0.80 0.72 0.30 0.30 0.30 

HM-IN-7 1 0.7 3 0.30 0.35 0.41 0.68 0.76 0.67 0.27 0.31 0.30 

HM-IN-7 1 0.7 4 0.34 0.42 0.32 0.67 0.71 0.67 0.28 0.32 0.27 

HM-IN-7 1 0.7 5 0.37 0.31 0.36 0.65 0.72 0.69 0.28 0.28 0.29 

HM-IN-8 1 1.3 1 0.35 0.34 0.41 0.67 0.76 0.68 0.28 0.31 0.31 

HM-IN-8 1 1.3 2 0.41 0.33 0.41 0.67 0.78 0.64 0.30 0.31 0.29 

HM-IN-8 1 1.3 3 0.40 0.30 0.36 0.66 0.71 0.66 0.30 0.28 0.29 

HM-IN-8 1 1.3 4 0.39 0.33 0.31 0.61 0.73 0.62 0.28 0.30 0.26 

HM-IN-8 1 1.3 5 0.35 0.27 0.36 0.66 0.77 0.64 0.28 0.28 0.28 
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Section/Test Age, # R MPD, mm DF20 F60 

Label Years Axles  L C R L C R L C R 

HM-IA-1 5 17.2 1 0.73 0.51 0.62 0.45 0.57 0.48 0.28 0.29 0.28 

HM-IA-1 5 17.2 2 0.61 0.45 0.69 0.46 0.62 0.51 0.27 0.30 0.30 

HM-IA-2 15 119.7 1 0.82 0.43 0.63 0.40 0.52 0.43 0.27 0.26 0.26 

HM-IA-2 15 119.7 2 0.69 0.54 0.56 0.38 0.49 0.34 0.25 0.27 0.21 

HM-IA-3 9 15.2 1 0.62 0.41 0.38 0.24 0.39 0.26 0.18 0.21 0.16 

HM-IA-3 9 15.2 2 0.48 0.32 0.48 0.24 0.39 0.26 0.17 0.20 0.17 

HM-IA-4 22 59.3 1 1.19 0.72 0.62 0.29 0.36 0.30 0.23 0.24 0.20 

HM-IA-4 22 59.3 2 1.21 0.95 0.73 0.34 0.54 0.36 0.26 0.34 0.24 

HM-IA-5 15 37.7 1 0.94 0.83 0.70 0.18 0.32 0.26 0.17 0.23 0.19 

HM-IA-5 15 37.7 2 0.80 1.03 1.03 0.21 0.32 0.24 0.18 0.24 0.20 

HM-IA-6 15 25.1 1 1.22 1.11 1.23 0.65 0.75 0.64 0.43 0.47 0.42 

HM-IA-6 15 25.1 2 1.30 0.86 1.34 0.70 0.75 0.67 0.46 0.44 0.44 

HM-IA-7 14 38.2 1 0.71 0.67 0.56 0.59 0.60 0.62 0.34 0.34 0.33 

HM-IA-7 14 38.2 2 0.65 0.53 0.61 0.63 0.63 0.65 0.34 0.32 0.35 

HM-IA-8 11 36.7 1 0.81 0.65 0.85 0.51 0.62 0.54 0.32 0.34 0.33 

HM-IA-8 11 36.7 2 0.72 0.62 0.79 0.50 0.60 0.51 0.30 0.33 0.31 

HM-IA-9 24 32.8 1 0.28 0.45 0.15 0.27 0.43 0.29 0.15 0.23 0.13 

HM-IA-9 24 32.8 2 0.29 0.60 0.20 0.25 0.41 0.28 0.15 0.25 0.14 

HM-IA-10 17 153.7 1 1.32 1.50 1.17 0.25 0.43 0.27 0.22 0.32 0.22 

HM-IA-10 17 153.7 2 1.29 1.26 1.25 0.26 0.44 0.29 0.22 0.31 0.24 

HM-IA-11 10 35.9 1 0.61 0.48 0.61 0.37 0.43 0.40 0.23 0.24 0.24 

HM-IA-11 10 35.9 2 0.78 0.45 0.75 0.46 0.42 0.42 0.29 0.23 0.27 
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